科目:物理化學(2004) 校系所組:中大化學學系 交大應用化學系甲組 清大化學系

R = 8.314 J/(K mole)

- For dry air at 1.0000 atm pressure, the densities at -50°C, 0°C, and 69°C are 1.5826 g dm⁻³, 1.2929 g dm⁻³, and 1.0322 g dm⁻³, respectively. From these data, and assuming that air obeys Charles's law, determine a value for the absolute zero of temperature in degrees Celsius. (10%)
- 2. Consider a system consisting of 3.0 mol $CO_2(g)$, initially at 35°C and 9.0 atm and confined to a cylinder of cross-section 100.0 cm². The sample is allowed to expand adiabatically against an external pressure of 2.5 atm until the piston has moved outwards through 25 cm. Assume that carbon dioxide may be considered a perfect gas with $C_{V,m} = 28.8 \text{ J K}^{-1} \text{ mol}^{-1}$, and calculate (a) q, (b) w, (c) ΔU , (d) ΔT , (e) ΔS . (20%)
- 3. The equilibrium constant of a reaction is found to fit the expression $\ln K = A + B/T + C/T^2$ between 400 K and 600 K with A = -1.76, B = -1368 K, and $C = 1.1 \times 10^5$ K². Calculate the standard reaction enthalpy and standard reaction entropy at 500 K. (20%)
- 4. (a) If A is an operator, then the exponential operator e^A is defined as a power series: $e^A = \sum_n (\frac{1}{n!})A^n$. If the eigenfunction f(x) of the operator A with an eigenvalue a, what is the eigenvalue of e^A when the exponential operator e^A operates on f(x). Show your answer? (2%)
- (b) Define an operator function $f(\lambda) = e^{A\lambda} B e^{-A\lambda}$, where A and B are two operators and λ is a parameter. Show that (i) f(0) = B, (ii) $\frac{df(\lambda)}{d\lambda} = [A, f(\lambda)]$ and (iii) $\frac{d^2 f(\lambda)}{d\lambda^2} = [A, [A, f(\lambda)]].$ (5%)
- (c) By setting $\lambda=1$, then the operator function $f(\lambda)=e^{A\lambda}Be^{-A\lambda}$ can be shown as $e^ABe^{-A}=B+[A,B]+\frac{1}{2!}[A,[A,B]]+\frac{1}{3!}[A,[A,A,B]]]+\dots$. When a sandwich operator R_A is defined as $R_A=e^{-iHt}A$ e^{iHt} , where both A and H are operators, $i=\sqrt{-1}$, and t represents time, then answer the following questions:
 - (i) Simplify the expression $e^{-i\omega Lzt}$ L_z $e^{i\omega Lzt}$, where L_z is the z-component of the angular momentum operator and ω is a constant? (2%)
- (ii) Simplify the function $e^{-i\omega Lzt}$ L_y $e^{i\omega Lzt}$ as a combination of cosine and sine functions, where L_y is the y-component of the angular momentum operator. (4%)

科目: 物理化學(2004) 校系所組: 中大化學學系 交大應用化學系甲組 清大化學系

- 5. Single-walled carbon nanotubes can be approximated by a particle-on-a-cylindrical-surface model. Suppose the cylinder has length L and radius a, with the z-axis along the cylinder.
 - (a) Write the kinetic energy Hamiltonian of the electron in terms of the length z, the radius a, and the radial angle ϕ of the cylinder. (4%)
 - (b) Combining ideas from the particle-in-a-box and 2-D rigid-rotor models, show that the wavefunction can be written as $\psi = A\sin(n\pi z/L)e^{im\phi}$, where A is a constant. What are the allowed values of the quantum numbers n and m? (6%)
 - (c) Write the energy expression in terms of m, n, L, a, and fundamental constants. (4%)
- 6. It is convenient to write the integrals that appear in quantum mechanics using the following Dirac notation: $\int \phi * A\psi d\tau = \langle \phi | A | \psi \rangle$. The $\langle \phi |$ that appears in this formula is termed a "bra", and the $|\psi\rangle$ is called a "ket". Note that the complex conjugation operation is assumed in writing the bra. If $|\alpha\rangle$ and $|\beta\rangle$ are two basis sets of a spin system, then these spin states can be expressed as matrices as follows:

$$|\alpha\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |\beta\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \langle \alpha| = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ and } \langle \beta| = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

The wavefunction of the system can be given by $|\psi\rangle = a|\alpha\rangle + b|\beta\rangle$, where a and b are two coefficients. Please answer the following questions:

- (a) What are the expressions of (a) $<\alpha|\alpha>$, (b) $<\beta|\alpha>$, (c) $<\psi|$, (d) $<\alpha|\psi>$, (e) $<\psi|\psi>$, and (f) $|\psi><\psi|$ in terms of a and b whenever possible? (12%)
- (b) What is the value of $\sum_{s=\alpha,\beta} |s| < s$ (3%)
- 7. The Fermi contact interaction is a coupling between the nuclear and electron spins and its Hamiltonian has the form:

$$H(Fermi) = As \bullet I$$

where A is a constant and s and I are the spin operators for the electrons and nucleus, respectively. Consider a hydrogen atom in its ground state.

- (a) What is the expectation value of H(Fermi) for the four possible combinations of electronic and nuclear spin states (i.e., $m_s = \pm \frac{1}{2}$ and $m_N = \pm \frac{1}{2}$)?
- (b) If the constant A in this case is 9.46571×10^{-25} joule, what resonance wavelength is associated with EPR transitions (wherein the electron spin changes quantum numbers while the nuclear spin is unchanged)? (4%) (note: Planck constant $h = 6.626 \times 10^{-34}$ joule•s and speed of light $c = 3 \times 10^8$ m/s)

