科目: 電子學(5001) 校系所組: 中大光電科學與工程學系、照明與顯示科技研究所 清大電機工程學系甲組、乙組、丙組、丁組 清大光電工程研究所、電子工程研究所、 清大工程與系統科學系丁組、動力機械工程學系乙組 陽明醫學工程研究所醫學電子紅 1. Consider the common-emitter amplifier circuit of Fig. 1 with a supply voltage $V_{CC} = 10$ V. Assume that the BJT has $I_S = 10^{-15}$ A, $\beta = 100$, $C_R = 0.2$ pF, and $C_{\pi} = 1$ pE. Fig. 1 - (a) Biasing the BJT with a dc collector current $I_C = \text{ImA}$, find dc voltage V_{RE} and R_C to provide a voltage gain $v_O / v_{bc} = -100 \text{V/V}$ (5%). - (b) Find the incremental (or small-signal) input resistance R_m and the input capacitance C_m of the amplifier. (5%) - (c) With $R_{sig} = 1 \text{K}\Omega$, find the -3dB bandwidth f_H and unity-gain bandwidth f_T of v_O / v_{sig} . (5%) - 2. The parameters of the circuit shown in Fig. 2 is listed below: $$V_{th} = 1 \text{ V}, \ \mu_n C_{ox} = 100 \ \mu\text{A}, \ \lambda = 0, \text{ and } 1.1 = 1.2 = 1.3 = 1.4 = 1 \text{ um}$$ W1 = 8um, W2 = W3 = W4 = 32um - (a) Find the voltage values at nodes V1, V2, and V3. (Neglect the body effect and channel length modulation) (15%) - (b) What operation regions are Q1 and Q3 in (cutoff, saturation or triode)? (5 %) Fig. 2 注:背面有試題 科目:電子學(5001) 校系所組: 中大光電科學與工程學系、照明與顯示科技研究所 清大電機工程學系甲組、乙組、丙組、丁組 清大光電工程研究所、電子工程研究所、 清大工程與系統科學系丁組、動力機械工程學系乙組 陽明醫學工程研究所醫學電子組 3. Find the input impedance $Z_{\rm in} = V/I$ of the op-amp circuit shown in Fig. 3. (15%) Fig. 3 4. For the op-amp circuit shown in Fig. 4, if $v_1(0^+) = 5$ V and $v_2(0^+) = 0$ V, find v_0 for t > 0. Let $R_1 = 100$ K Ω , $R_2 = 200$ K Ω , $C_1 = 1\mu$ F, $C_2 = 0.5$ μ F. (15%) 注:背面有試題 科目:電子學(5001) 校系所組:中大光電科學與工程學系、照明與顯示科技研究所 清大電機工程學系甲組、乙組、丙組、丁組 清大光電工程研究所、電子工程研究所、 清大工程與系統科學系丁組、動力機械工程學系乙組 陽明醫學工程研究所醫學電子組 5. Fig. 5 shows a popular configuration for a two-stage CMOS OP Amp. Assuming the transconductances of $Q_1...Q_8$ are $g_{ml}...g_{m8}$, the output resistances of $Q_1...Q_8$ are $r_{ol}...r_{o8}$, answer the following questions to analyze its operation and design its compensation network. Fig. 5 - (a) Find out the overall DC voltage gain of the CMOS OP Amp. (5%). - (b) Assume that the load capacitance C_L and C_C are much greater than the transistor capacitances. Then we can find the CMOS OP Amp to have two poles ω_{P1} , ω_{P2} and one zero ω_Z such as: $$\omega_{P1} \cong \frac{1}{G_{m2}R_1R_2C_C} \qquad \omega_{P2} \cong \frac{G_{m2}}{C_L} \qquad \omega_Z = \frac{G_{m2}}{C_C}$$ where G_{m2} is the transconductance of the second stage, R_I is the output resistance of the first stage, R_2 is the output resistance of the second stage. If we already know the unity gain frequency f_i , what is the <u>phase margin</u> of the Op Amp in terms of f_i , f_{P2} , f_Z (5%) - (c) The additional phase lag provided by the zero is unwanted. A simple and elegant solution is to include a resistance R in series with C_C , as shown in Fig. 5. If we want to place the zero at infinite frequency, how should we pick the value of resistance R_{∞} ? (5%) - (d) Suppose student A selects $R = R_A > R_\infty$ and gets phase margin PM_A , student B selects $R = R_B < R_\infty$ and gets phase margin PM_B , student C selects $R = R_\infty$ and gets phase margin PM_C . Please compare their phase margins. (5%) 注:背面有試題 科目:電子學(5001) 校系所組: 中大光電科學與工程學系、照明與顯示科技研究所 清大電機工程學系甲組、乙組、丙組、丁組 清大光電工程研究所、電子工程研究所、 清大工程與系統科學系丁組、動力機械工程學系乙組 陽明醫學工程研究所醫學電子組 - 6. The circuit shown in Fig. 6 (a) can be used as a memory element. The output voltage with only two possible states L' and L' is determined by the previous value of the trigger signal V_{in} , where R_1 = 2 k Ω and R_2 = 10 k Ω : - (a) Assuming $L^4 = 12 \text{ V}$ and L = -12 V, determine the input threshold voltages V_{TH} and V_{TL} when the output state changes. (5%) - (b) By adding R_3 (2 k Ω) and V_{ref} (12 V), the circuit shown in Fig. 6 (b) becomes a comparator with hysteresis characteristics. Determine the threshold voltage V_{TH} and V_{TL} , and plot the transfer characteristic V_{in}/V_{out} of the circuit. (10%) Fig. 6