國立中央大學九十三學年度碩士班研究生入學試題卷 共2頁 第1頁

所別: <u>物理學系碩士班 不分組科目: 近代物理</u>

1. Explain the followings (4 pts each)

- (a) Compton effect
- (b) Wave-particle duality
- (c) Uncertainty principle
- (d) Bohr's model of the hydrogen atom
- (e) Shroedinger equation and wave function
- (f) Spin-orbit interaction
- (g) The Stern-Gerlach experiment
- 2. (a) (3 pts) Draw a graph showing spectrum of black body radiation of two temperatures T_1 and T_2 , with $T_2 > T_1$.
 - (b) (4 pts) Consider a cubic box with size $L \times L \times L$ filled with electromagnetic radiations. Show that the number of allowed values in frequency range ν and $\nu + d\nu$ is

$$N(\nu)d\nu = \frac{8\pi V}{c^3}\nu^2 d\nu.$$

Here $V = L^3$ and c is the speed of light.

- (c) (3 pts) In classical picture, the probability $P(\epsilon)$ for each frequency carrying energy ϵ is proportional to $\exp(-\epsilon/kT)$. Show that the average energy for each frequency is kT, and derive the Rayleigh-Jeans formula for blackbody radiation.
- (d) (5 pts) What is the Planck's postulate about the energy ϵ ?
- (e) (7 pts) Derive the Planck's formula for blackbody radiation.
- 3. (a) (3 pts) Write down the one dimensional time-dependent Schroedinger's equation for the wave function $\Psi(x,t)$, with a potential V(x).
 - (b) (4 pts) Use the separation of variable

$$\Psi(x,t)=\psi(x)\phi(t)$$

to derive the time-independent Schroedinger's equation for $\psi(x)$,

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x).$$

What is $\phi(t)$?

参考用

國立中央大學九十三學年度碩士班研究生入學試題卷 共2頁 第2頁

所別: 物理學系碩士班 不分組科目: 近代物理

(c) (10 pts) Consider a square-well potential of

$$V(x) = \begin{cases} V_0 & x < -a/2 \\ 0 & -a/2 < x < a/2 \\ V_0 & x > a/2 \end{cases}$$

Calculation the wave functions $\psi(x)$ and eigenvalues E for $E < V_0$.

- (d) (3 pts) Make a graph showing some of the calculated wave functions.
- (e) (5 pts) Consider another potential of

$$V(x) = \begin{cases} 0 & x < -a/2 \\ V_0 & -a/2 < x < a/2 \\ 0 & x > a/2 \end{cases}$$

When a particle approaches the potential from $x = -\infty$ with an energy E which is smaller than V_0 , explain why there is a tunneling probability P_t for the particle to tunnel through the potential barrier.

- (f) (5 pts) Estimate the functional dependence of P_t on E, V_0 , and a.
- 4. For a system with two states $|1\rangle$ and $|2\rangle$, we can write its state vector as

$$|\psi\rangle(t) = C_1(t)|1\rangle + C_2(t)|2\rangle.$$

(a) (5 pts) Since $|\psi\rangle$ follows

$$i\hbar \frac{d\ket{\psi}}{dt} = H\ket{\psi},$$

show that C_1 and C_2 follow the equations

$$i\hbar \frac{dC_1}{dt} = H_{11}C_1 + H_{12}C_2$$

 $i\hbar \frac{dC_2}{dt} = H_{12}C_1 + H_{22}C_2$

Here $H_{ij} \equiv \langle i | H | j \rangle$.

- (b) (5 pts) Assume that $H_{11} = H_{22} = E_0$ and $H_{12} = H_{21} = -A$, find the solutions of $C_1(t)$ and $C_2(t)$.
- (c) (5 pts) Find the stationary states $|I\rangle$ and $|II\rangle$. (A stationary state means a state with a definite energy, i.e., if $|\psi\rangle$ (t=0) = $|I\rangle$, then $|\psi\rangle$ (t) = $\exp(-iE_It/\hbar)$ $|I\rangle$.) What are E_I and E_{II} ?
- (d) (5 pts) Now if $H_{11} = E_0 + \epsilon$ and $H_{22} = E_0 \epsilon$, what are E_I and E_{II} ? Make a graph showing E_I and E_{II} as functions of ϵ .

