國立中央大學九十一學年度碩士班研究生入學試顯卷

所別: 統計研究所 不分組 科目: 數理統計 共一頁 第一頁

請依題目編號逐一作答

A.簡答題(只需給答案即可!) 60%

- (A1). Let $Y_1 < Y_2 < Y_3 < Y_4$ be the order statistics of a random sample from an exponential distribution that has mean of 1, then $Pr(Y_1 > 1) = ?$ (6%)
- (A2). Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics of a random sample from the uniform distribution $U(0,\theta)$.
 - (a) Find the maximum likelihood estimator of θ .

-(6%)

(b) Find the sufficient statistics of θ .

(6%)

(c) Find a constant c so that cY_n is an unbiased estimator of θ .

(6%)

- (A3). The length in centimeters of n=8 fish were, 5.0, 3.9, 5.2, 2.8,6.1, 6.4, 2.7, 2.3. Let m_0 denote the median of length. To test the hypothesis $H_0: m_0=3.7$ against $H_1: m_0>3.7$. Find value of the Wilcoxon sign rank-sum statistics.
- (A4). Let X_1, X_2, \dots, X_n be a random sample from Bernoulli distribution with parameter p. Suppose that p has a U(0,1) prior density, find the Bayes estimator for p. (6%)
- (A5). Let X_1, X_2, \dots, X_{100} be a random sample from a Poisson distribution with a mean of 1. Approximate $\Pr(75 < \sum_{i=1}^{100} X_i \le 82)$, by using Central Limit Theorem. (6%)
- (A6). Let X_1, X_2, \dots, X_n be a random sample from normal distribution with mean μ , where $\mu \geq 0$ and variance 1. Find the maximum likelihood estimator for μ .
- (A7). If X and Y are independent random variables, what is the regression equation by regressing Y on X (6%)
- (A8). Thirty samples of data for the heights (x) and weights (y) were obtained. After algebras, the results gave $\sum x_i = 60$, $\sum y_i = 90$, $\sum x_i^2 = 300$, $\sum y_i^2 = 750$, $\sum x_i y_i = 420$. Find the equation of the least squares line of y on x.

B.計算及証明題(請列出計算及証明過程)40%

- (B1). Let X_1, X_2, \dots, X_n be a random sample from Normal $(\mu, 1)$. Given H_0 : $\mu=0$ and H_1 : $\mu=1$, how large should n be chosen to guarantee α (Type I error) and β (Type II error) = 0.05. (10%)
- (B2). If the random variable X is N(0,1). Show that the random variable $V=X^2$ is $\chi^2(1)$. (10%)
- (B3). Let X_1, X_2, \dots, X_n be a random sample from the normal distribution, $N(\mu, \sigma^2)$. Find a $100(1 \alpha)\%$ confidence interval for σ^2 .
- (B4). Let X_1, X_2, \dots, X_n be a random sample from the normal distribution, $N(\mu, \sigma^2)$, where σ^2 is unknown. Calculate the expected length of a 95% confidence interval for μ . (10%)

