國立中央大學九十學年度碩士班研究生入學試題卷

<u>統計研究所 不分組</u>科目: <u>數理統計</u> 共<u>/</u>頁 第<u>/</u>頁

[15%] 1. Let X_1, X_2, \ldots, X_n be i.i.d. Bernoulli random variables with parameter $\theta, 0 < \theta < 1$. Find the conditional distribution of X_1 given the value of $T(X_1, \ldots, X_n) = X_1 + X_2 + X_3 + X_4 + X_4 + X_5 + X_5$ $\ldots + X_n$. What can you conclude on $T(X_1, \ldots, X_n)$? Give your reason.

- [20%] 2. Let X_1, X_2, \ldots, X_n be a random sample from a uniform distribution over $(\theta 1/2, \theta +$ 1/2), for some $\theta \in R$.
 - a) Find the maximum likelihood estimator (MLE) of θ .
 - b) Show that $\hat{\theta} = (X_{(1)} + X_{(n)})/2$ is an unbiased estimator of θ , where

 $X_{(1)} = \min(X_1, X_2, \dots, X_n)$ and $X_{(n)} = \max(X_1, X_2, \dots, X_n)$. Is it an MLE?

[10%] 4. Let X be a single observation from the following distribution

where $\theta \in [0, 0.1]$. Find the MLE of θ .

- [20%] 5. Let (X,Y) be uniformly distributed on the unit disk $x^2 + y^2 \le 1$.
 - a) Show that E(XY) = [E(X)][E(Y)]. Are X and Y independent? Why?
 - b) Find the conditional expectation of X given $Y = 1/\sqrt{2}$.
- [10%] 6. Let X_1, X_2, \ldots, X_n be a random sample with pdf

$$f(x|\mu) = \exp\{-(x-\mu)\},$$
, where $x > \mu$

and $-\infty < \mu < \infty$ is an unknown parameter. Let $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ be their order statistics and $\bar{X} = \sum_{i=1}^{n} X_i/n$. Determine which of the followings are sufficient statistics for μ . Give brief reasons.

- (A) $\bar{X} \mu$ (B) (X_1, X_2, \dots, X_n) (C) $X_{(n)} X_{(1)}$ (D) $X_n X_1$ (E) $S^2 = \sum_{i=1}^n (X_i \bar{X})^2 / (n-1)$ (F) $\sigma^2 = \sum_{i=1}^n (X_i \mu)^2 / n$.
- [15%] 3. Let $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where ϵ_i are i.i.d. $N(0, \sigma^2)$ random variables, x_i are given constants, for i = 1, ..., n; β_0, β_1 and σ^2 are unknown parameters. Note that the MLE's of β_0 and β_1 are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \text{ and } \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}, \text{ respectively.}$$

Find a $(1 - \alpha)100\%$ confidence interval for β_1 .

(10%) 7. It is desired to test $H_0: \theta = 0$ vs. $H_1: \theta = 1$, based on observing X which assumes the values 1, 2, or 3 with probabilities

		F	χ.		
		1	2	3	
۵	0	0.09	0.01	0.9	\[\bar{\pi_1}{\pi_2}\]
•			4.40		

Find the lpha=.1 level most powerful test and its Type I and Type II error probab