國立中央大學八十七學年度碩士班研究生入學試題卷

所別: 統計研究所 不分組 科目: 數理統計 共 / 頁 第 / 頁

- Let $X_1, ..., X_n$ be a random sample from the normal distribution with mean θ and variance θ^2 , where $0 < \theta < \infty$.
 - (a) Find the maximum likelihood estimator (MLE) for θ , denoted by $\hat{\theta}$. (10%)
 - (b) Show that the MLE is consistent for θ. (8%)
 - (c) Find the function $\gamma(\theta)$ so that the asymptotic distribution of $\sqrt{n} (\hat{\theta} \theta)/\gamma(\theta)$ is a standard normal as $n \to \infty$. (10%)
- If Let $X_1, ..., X_n$ be a random sample from the Poison distribution with parameter λ .
 - (a) Find the uniformly minimum variance unbiased estimator (UMVUE) of $(1+\lambda)e^{-\lambda}$, the probability of $X_1 = 0$ or $X_1 = 1$. (15%)
 - (b) Find a 95% confidence interval for λ . (10%)
- III Let λ be the proportion of defective items in a batch of products. For testing H_0 : λ =0.05 versus H_1 : λ >0.05, we take a random sample of 100 items from the batch. Let Y denote the number of defective items in the sample.
 - (a) If we observe Y= 10. What is the associated p-value? Draw your conclusion according to the p-value. (7%)
 - (b) If we want to estimate λ within an error of 0.05, justity whether the sample size of 100 is enough to guarantee such an estimation with probability 0.95? (5%)
- IV Let X_1 and X_2 be a random sample from the distribution with probability density function $\lambda e^{-\lambda x}$ for x > 0. We consider to reject H_0 : $\lambda = \log 2$ in favor of H_1 : $\lambda < \log 2$ if $X_1 + X_2 \ge c$.
 - (a) Find the value of c so that the size of the test is 0.05. (10%)
 - (c) Find the power of the size 0.05 test at λ =2log2. (10%)
- V Let $X_1, ..., X_n$ be a random sample from the distribution with probability density function $e^{-(x-\theta)}$ for $\theta \le x < \infty$, where $-\infty < \theta < \infty$. Find the size α likelihood ratio test of H_0 : $\theta=0$ versus H_1 : $\theta \ne 0$. Specify clearly the associated critical value. (15%)