國立中央大學八十六學年度碩士班研究生入學試題卷

所別:

統計研究所

1 科目

數理統訂

共 / 頁 第 / 頁

Please answer the following questions in order!

I. Suppose X_1, X_2, \dots, X_n be a random sample from Normal (μ, σ^2) , while μ and σ^2 are unknown. Define two estimators of σ^2 as follows:

$$S_1^2 = \sum_{i=1}^n (X_i - \bar{X}_n)^2 / n$$
 and $S_2^2 = \sum_{i=1}^n (X_i - \bar{X}_n)^2 / (n-1)$,

here \bar{X}_n is the sample mean. Compare the mean squared errors between S_1^2 and S_2^2 . (15%)

II. Suppose that the proportion p of defective items in a large population of items is unknown, and that it is desired to test H_0 : p = 0.4 against H_1 : p < 0.4. If a random sample of 100 item is drawn from the population. Let Y denote the number of defective items in the sample, and consider a test procedure such that the critical region contains all the outcomes for which $Y \leq 32$. Determine the size of the test (8%) and the power at p = 0.2 (4%), by using central limit theorem.

III. For any random variables X and Y, show that the correlation coefficient between X and Y, denote by ρ_{XY} , satisfies $-1 \le \rho_{XY} \le 1$. (10%)

IV. Let X_1, X_2, \dots, X_n be a random sample from Normal (μ, σ^2) , where μ and σ^2 are unknown.

- (1). Find a $(1-\alpha)100\%$ confidence interval of μ . (5%)
- (2). Convert the confidence interval obtained in (a) into a level 2α testing procedure for H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$. (5%)

V. Just give answers to the following problems. Be careful of calculations!

- (1). Suppose that a point (X, Y) is chosen at random from the circle S, where $S = \{(x, y) : (x+3)^2 + (y-1)^2 \le 13\}$. Then $Prob(Y \ge 1|X=0) = ?$ (5%)
- (2). Let X be a discrete random variable with cdf $F_X(x)$ and $Y=F_X(X)$. Which one of the following statements is correct? (5%)
 - (a). Y follows uniform(0,1).
 - (b). Y is stochastically larger than uniform(0,1).
 - (c). Y is stochastically smaller than uniform (0,1).
 - (3). In problem I, which one, S_1^2 or S_2^2 , is unbiased?
- (4). Let the probability p_n that a family has exactly n children be αp^n when $n \ge 1$, and $p_0 = 1 \alpha p(1 + p + p^2 + \cdots)$. Suppose that all sex distributions of n children have the same probability. Find the probability that a family has exactly k boys, $k \ge 1$. (5%)
 - (5). For any random variables X and Y,
 - (a). is X and Y E(Y|X) correlated or not? (5%)
 - (b). let $\min_{g(X)} E[(Y g(X))^2] = E[(Y g^*(X))^2]$, then $g^*(X) = ?$ (5%)
 - (6). Let $\min_{a} E|X a| = E|X a(X)|$, then a(X) = ? (5%)

VI. Give definitions to following statements:

- (1). Chebychev Inequality (3%)
- (2). Weak Law of Large Numbers
- (3%) (3%)

- (3). Central Limit Theorem
- (3%)
- (4). Cramér-Rao Inequality
- (070)

- (5). Neyman-Pearson Lemma
- (3%)
- (6). Lehmann-Scheffé Theorem