國立中央大學96學年度碩士班考試入學試題卷

所別:統計研究所碩士班一般生科目:基礎數學

- 1. Let f(x) be a real-valued function defined in the open interval (-1,1). Suppose that $\lim_{h\to 0} \frac{f(h)-f(-h)}{2h}$ exists. Prove or disprove that f'(0) exists. (10%)
- 2. Suppose $a_n > 0$, $n = 1, 2, \dots$, $s_n = a_1 + \dots + a_n$, and $\sum_{n=1}^{\infty} a_n$ diverges. Prove that (a) $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ diverges (b) $\sum_{n=1}^{\infty} \frac{a_n}{s_n^2}$ converges.
- 3. (a) Use the formula $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$, to show that $\int_0^\infty \frac{\sin x \cos x}{x} dx = \frac{\pi}{4}$. (5%)
 - (b) Use integration by parts in (a), to find $\int_0^\infty \frac{\sin^2 x}{x^2} dx$. (5%)
 - (c) Use (b) and $\sin^2 x + \cos^2 x = 1$ to find $\int_0^\infty \frac{\sin^4 x}{r^2} dx$. (8%)
- 4. Let $f_n(x) = 1/(1+n^2x^2)$, $n = 1, 2, \dots, 0 \le x \le 1$. Prove that $\{f_n\}$ does not converge uniformly on [0, 1]. (10%)
- 5. (a) Find the extreme values of the real-valued function $f(x_1, \dots, x_n) = \sum_{i=1}^n x_i^2$ under the restriction $\sum_{i=1}^{n} a_i x_i = 1$, where a_i , $i = 1, \dots, n$ are fixed real numbers, by using the method of Lagrange multipliers. (10%)
 - (b) Are these extreme values in (a) to be points of local maximum or minimum of f? Justify your answer. (2%)
- 6. A $n \times n$ matrix **X** is called idempotent if $\mathbf{X}^2 = \mathbf{X}$. Let **A** and **B** be $n \times n$ idempotent matrices.
 - (a) Suppose A B is idempotent. Prove that AB = BA = B. (8%)
 - (b) Denote $\mathbf{A} = (a_{ij})$ where $a_{ij} = a_{ji}$, $1 \le i, j \le n$. Prove that $\sum_{i=1}^{n} a_{ii} = \dim(\mathbf{A})$ (= rank(A)). (10%)
- 7. Let A and A* be $n \times n$ matrices. A* is said to be a generalized inverse (g-inverse) of A if $AA^*A = A$. Note that A^* always exists but may not be unique. Assume G is any g-inverse of A'A.
 - (a) Prove that G' is also a g-inverse of A'A. (4%)
 - (a) Frove that \mathbf{G} inverse of the matrix $\mathbf{B} = \begin{bmatrix} 3 & 2 & 5 \\ 1 & 4 & 7 \\ 6 & 4 & 10 \end{bmatrix}$. (4%)
 - (c) Let X be an $n \times m$ matrix, and let P and Q be $k \times m$ matrices prove that

$$PX'X = QX'X \text{ implies } PX' = QX'. \tag{4\%}$$

- (d) Use (c), to prove AGA'A = A. (5%)
- (e) Prove that \mathbf{AGA}' is symmetric, whether \mathbf{G} is or not. (5%)