系所別:

統計研究所

科目:

基礎數學

(1) For some real value p, 0 , define the function <math>f by

$$f(x) = \begin{cases} (1-p)^{x-1} p, & x = 1, 2, 3, ... \\ 0, & \text{otherwise} \end{cases}$$

- (a) Calculate $F(y) = \sum_{x=1}^{\lfloor y \rfloor} f(x)$ for a given real value y, where $\lfloor y \rfloor$ denotes the largest integer $\leq y$.
- (b) Which of the following are true? (multiple choice)
 - (i) F(y) is differentiable
- (ii) F(y) is left-continuous
- (iii) F(y) is right-continuous
- (iv)F(y) is a step function

(v)
$$F(y)$$
 is increasing

(vi)
$$\lim_{y \to \infty} F(y) = 1$$

(6%)

(2) Define a real-valued function f by

$$f(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

(a) Show that for any $\alpha > 1$, $f(\alpha) = (\alpha - 1)f(\alpha - 1)$.

(6%)

(b) Calculate f(n) for any positive integer n > 1.

- (6%)
- (c) The Stirling's formula states that for $n \in N$, $\lim_{n \to \infty} \frac{n!}{n^{n+(1/2)}e^{-n}} = \sqrt{2\pi}$.

Consider a sequence $A_n = {2n \choose n} p^n (1-p)^n$, 0 .

Show that
$$A_n \approx \frac{[4p(1-p)]^n}{\sqrt{n\pi}}$$
 as $n \to \infty$. (7%)

(d) What is the condition of p such that $\sum_{n=1}^{\infty} A_n$ will converge?

(7%)

Note: $\binom{m}{n}$ denotes possible number of combinations that we choose n items from m items.

(3) A function $f:(a,b) \mapsto R$ is convex on (a,b) if

 $f(rx+(1-r)y) \le rf(x)+(1-r)f(y)$ for all a < x < y < b and $0 \le \lambda \le 1$.

(a) Which of the following are convex on $(0, \infty)$? (multiple choice)

(i)
$$1/x$$
 (ii) $\log x$ (iii) $-\log x$ (iv) e^{-x} (v) $e^{-(x-1)^2/2}$ (vi) $\tan^{-1} x$ (6%)

(b) An alternative definition for a convex function is that for $\mu \in (a,b)$,

$$f'(\mu)(x-\mu) + f(\mu) \le f(x)$$
 for all $x \in (a,b)$

Show that if f'(x) exists and $f''(x) \ge 0$ for all $x \in (a,b)$, then f is convex on (a, b).

(6%)

(4) Let X be an $n \times 3$ matrix and $R = X'X = \begin{bmatrix} 1 & k & s \\ k & 1 & t \\ s & t & 1 \end{bmatrix}$.

(a) What is the constraint on k, s, t such that matrix R is singular.

(6%)

(b) Suppose matrix R has three distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3$ and let $\vec{v}_1, \vec{v}_2, \vec{v}_3$ be eigenvectors corresponding to $\lambda_1, \lambda_2, \lambda_3$. Please use matrix forms to represent the relationship between $\lambda_1, \lambda_2, \lambda_3, \vec{v}_1, \vec{v}_2, \vec{v}_3$ and R. (6%)

注:背面有試題

系所別:

統計研究所

科目

基礎數學

(c) Let the eigenvector matrix $B = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ and suppose B is orthonormal (that is, $B = I_3$). The eigen decomposition of R is shown as

$$R = B\Lambda B' = (\vec{v}_1, \vec{v}_2, \vec{v}_3) \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} (\vec{v}_1, \vec{v}_2, \vec{v}_3)'$$

Calculate $\lambda_1 + \lambda_2 + \lambda_3$.

(6%)

- (d) If X represents a data matrix, then Y = XB is commonly used for the dimension reduction purpose. Show that trace(Y'Y) = 3. (6%)
- (5) Let A be an $n \times n$ matrix with the dimension of the row space is k, k < n.
 - (a) Which of the following are true? (multiple choice)
 - (i) dimension of column space is k
- (ii) A is invertible
- (iii) $\det(A'A) = 0$ (iv) $\det(A^2) = 0$
- (v) all eigenvalues of A are zero
- (vi) all row vectors are linearly independent

(6%)

- (b) Let $A = \begin{bmatrix} 0 & 0 & 4 & 1 \\ 0 & 2 & 0 & 4 \\ 0 & 1 & 0 & 2 \\ 5 & 0 & 0 & 1 \end{bmatrix}$, find an *orthonormal* basis for the column space. (6%)
- (c) Suppose $|\vec{v}_1, \vec{v}_2, \vec{v}_3|$ is an orthogonal basis for the row space of A.

 Denote $||\vec{v}_1||_{23}$ to be the length of vector $|\vec{v}_1|$ projected onto the vector $||\vec{v}_1||_{23}$.

 Calculate $||\vec{v}_1||_{23}$.
- (6) A symmetric matrix A is said to be positive definite if x'Ax > 0 for all nonzero vectors x. For what range of the number b is the following matrix positive definite?

$$A = \begin{bmatrix} 2 & 2 & 4 \\ 2 & b & 8 \\ 4 & 8 & 7 \end{bmatrix}$$
 (8%)

