## 國立中央大學九十一學年度碩士班研究生入學試題卷

所別: 統計研究所 不分組 科目: 基礎數學 共 / 頁 第 / 頁

1. Let the real-valued function f be defined on  $(-\infty, \infty)$  by

$$f(x) = \left\{ \begin{array}{ccc} x^2 \sin \frac{1}{x} &, & x \neq 0 \\ 0 &, & x = 0 \end{array} \right.$$

(a) Prove or disprove that f is differentiable in  $(-\infty, \infty)$ .

(8%)

- (b) Prove or disprove that the first derivative function f' is a continuous function. (8%)
- 2. Find  $\lim_{x\to 0} \frac{e-(1+x)^{\frac{1}{x}}}{2x}$ .

(10%)

- 3. (a) Prove that if x > 0 and  $\alpha > 0$ , then  $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+x)^n} = 0$ . (8%)
  - (b) Let  $f_n(x) = nx(1-x^2)^n$ ,  $0 \le x \le 1$ ,  $n = 1, 2, \cdots$ . Prove or disprove

$$\lim_{n\to\infty}\int_0^1 f_n(x)dx = \int_0^1 \left[\lim_{n\to\infty} f_n(x)\right]dx \ .$$

(8%)

- 4. (a) Directly compute  $\int_0^\infty \int_0^\infty e^{\frac{-(x^2+y^2)}{2}} dx \, dy$  without quoting from any formula. (8%)
  - (b) Using the result of (a), compute  $\int_0^\infty x^{-\frac{1}{2}} e^{-x} dx$ . (8%)
- 5. Let A be an  $m \times n$  matrix  $(m \neq n)$ .

(a) Prove that if 
$$tr(A'A) = 0$$
, then  $A = 0$ . (6%)

- (b) Prove or disprove that if m = n and  $tr(A^2) = 0$ , then A = 0. (6%)
- 6. Let A and B be  $n \times n$  symmetric matrices, and let AB be idempotent. Show that BA is also idempotent. (10%)
- 7. Let A be an  $n \times n$  positive definite matrix, and let B be an  $n \times n$  nonnegative definite matrix. Show that  $|A + B| \ge |A|$ . (10%)
- 8. Suppose A is an  $n \times n$  matrix, and  $A = I \frac{1}{n} \cdot 1 \cdot 1'$ , where I is an  $n \times n$  identity matrix and 1 is an n-component column vector with all elements equal to 1. Show that the rank of A is equal to n 1.

★ Note:

- 1. All elements of matrices in this exam are real-valued.
- 2. You may use the following definition to answer the questions. Definiton: Let  $A=(a_{ij}), 1 \leq i \leq n, 1 \leq j \leq n$ .
  - (1) The trace of **A** is defined as  $tr(A) = \sum_{i=1}^{n} a_{ii}$ .
  - (2) A is called idempotent if  $A^2 = A$ .
  - (3) A is said to be nonnegative definite if for every real vector  $x \neq 0$ ,  $x'Ax \geq 0$ , and A is said to be positive definite if for every real vector  $x \neq 0$ , x'Ax > 0.

