- I. (a) What do you mean by "f is differentiable at x"? "f is continuous at x"? (6%)
 - (b) Show that differentiability implies continuity. Give an example to show that the converse is not true. (9%)
- II. Find the Taylor series for each of the following functions about the origin and indicate the interval of convergence. (12%)
 - (a) $f(x) = e^x$, (b) $f(x) = \cos x$, (c) $f(x) = \ln (1+x)$.
- III. (a) What is the Fundamental Theorem of Calculus? (5%)
 - (b) Find $\frac{d}{dx} \int_{5}^{x^2} (t^5 + 1)^{\frac{1}{2}} dt$. (5%)
- IV. Find the point (x, y) on the parabola $x^2 3y = 6$ that is closest to the origin. (10%)
- V. Using that fact that $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = 1$ to evaluate:

(a)
$$\int_0^\infty e^{-x^2} dx$$
, (4%)

(b)
$$\int_0^\infty x^{-\frac{1}{2}} e^{-x} dx$$
. (4%)

- VI. (a) Prove that $(x'y)^2 \le (x'x)(y'y)$ for all n-vectors x and y. (5%)
 - (b) If S is an $n \times n$ positive definite matrix, show that $(x'y)^2 \le (x'Sx)(y'S^{-1}y)$ for all n-vectors x, y. (5%)
- VII. Let $L: V \to W$ be a linear transformation from V to W. Show that

 $\dim (\ker L) + \dim (\operatorname{range} L) = \dim (V),$

where ker $L = \{x \in V : L(x) = 0\}$, range $L = \{L(x) : x \in V\}$, and dim(·) denotes the dimension of the vector space (·).

- III. Let A be an $n \times n$ matrix with eigen-values $\lambda_1, \dots, \lambda_n$. Show that
 - (a) the determinant of A , $|A| = \prod_{i=1}^{n} \lambda_i$. (4%)
 - (b) the trace of A, $tr(A) = \sum_{i=1}^{n} \lambda_i$. (4%)
 - (c) A', the transpose of A , has the same eigen-values as A.(Hint: You may consider the characteristic polynomial of A.)
 - (d) What can you say about the associated eigen-vectors of A' and A. (6%)
- IX. Describle the Gram-Schmidt orthonormalization process. (7%)