國立中央大學八十三學年度研究所碩士班入學試題卷

系所別: 統計研究所

中 組 科目: 數理統計

共一頁第一頁

Please answer the following questions one by one!

- 1. Let X_i be independently $N(\mu_x, \sigma^2)$ distributed, for $i = 1, 2, \dots, n_x$; Y_i be independently $N(\mu_y, \sigma^2)$ distributed, for $i = 1, 2, \dots, n_y$, such that $\{X_i\}$ and $\{Y_i\}$ be independent. Derive (state reasons) a confidence interval for $\mu_x \mu_y$ when

 (a) σ^2 is known.

 (b) σ^2 is unknown.

 (c) Suppose σ^2 is unknown, derive a test statistic for $H: \mu_x = \mu_y$ against $A: \mu_x \neq \mu_y$ at (5%)
- level α from result (b). (5%)
- 2. Suppose X has a Poisson distribution with mean λ.
 (a) Find the characteristic function of X.
 (b) Define Z = (X λ)/√λ, show that the limiting distribution of Z as λ → ∞, is the standard normal distribution.
- 3. Let X and Y be two random variables. Show that (a) $Var(Y) = E[Y E(Y|X)]^2 + E[E(Y|X) E(Y)]^2$. (10%) (b) If $Var(Y) < \infty$, then $Var(Y|X) \le Var(Y)$. (5%)
- 4. Suppose $f(x) = \theta^x (1 \theta)^{1-x}$, for x=0,1, and 0 otherwise. Let $H: \theta = 1/10$, $A: \theta > 1/10$. If a sufficiently large sample is taken to justify using the central limit theorem, what critical region of size .05 would you select for this test. (10%)
- 5. Consider n items whose times to failure X_1, X_2, \dots, X_n form a sample from the exponential distribution with mean μ . When the experiments stop at time T, $n_1(0 < n_1 < n)$ failed items are observed, the corresponding failure times are $t_i, i = 1, 2, \dots, n_1$. And the rest $n n_1$ items are still alive at time T. Express the likelihood function for this phenomenon. (10%)
- 6. Just give the answer, don't show your derivations!
- (a) Let $X \sim N(0, 1)$, then $Var(X^2) =$ ______. (5%)
- (b) Given the fact that the expected value of an F variable with n_1 and n_2 degrees of freedom is equal to $n_2/(n_2-2)$ for $n_2 > 2$. Then the variance of a t variable with n (n > 2) degrees of freedom is ______. (5%)
- (c) Let $\Psi_X(t) = log\{E[exp(tX)]\}$, for all $[t] < t_0$, where $t_0 > 0$. Then $\Psi'(0) =$ _______ and $\Psi''(0) =$ _______. (5%)
- (d) A population with θ members labeled consecutively from 1 to θ . The population is sampled with replacement and n members of the population are observed and their labels X_1, X_2, \dots, X_n are recorded. Then _____ is a minimal sufficient statistic for θ . (5%)
- (e) Let X_i 's be random variables, $E(X_i) = 0$, $Var(X_i) = \sigma^2$, for $i \neq j$, correlation $(X_i, X_j) = \rho$, if |i j| = 1, and 0 otherwise. Then $E(\sum_{i=1}^n (X_i \bar{X})^2) = \underline{\qquad}$, where $\bar{X} = \sum_{i=1}^n X_i / n$.
- (f) Let X_i be i.i.d. Bernoulli(p), $i = 1, 2, \dots, n$. Find the UMVUE for p. _____ (5%)