所別: 數學研究所 不分組 科目: 高等微積分 共 1 頁 第 1 頁

## All problems are equally weighted

1. Let  $S=(2,3]\cup [5,7]$  be a subset of  $\mathbb{R}$ . Define a function  $f:S\mapsto \{0,1\}$  by

$$f(x) = \begin{cases} 0 & \text{if } x \in (2,3] \\ 1 & \text{if } x \in [5,7]. \end{cases}$$

Is f continuous on S? Why?

- 2. Let d be a metric on a set M. Define  $\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$ , for  $x,y \in M$ . Prove or disprove that  $\rho$  is a metric on M.
- 3. Prove or disprove that  $f(x) = 1/(x^2 + 1)$  is uniformly continuous on  $\mathbb{R}$ .
- 4. Let  $A \subseteq \mathbb{R}^n$  be compact. Prove or disprove that A has a countable dense subset.
- 5. Each  $f_n$  is differentiable on [-1,1] and  $f_n \to f$  uniformly on [-1,1]. Prove or disprove that f is also differentiable on [-1,1].
- 6. Suppose  $\sum_{n=0}^{\infty} c_n x^n$  converges at x=R, and  $0<\varepsilon< R$ . Show that  $\sum_{n=0}^{\infty} c_n x^n$  converges uniformly on  $[-R+\varepsilon, R-\varepsilon]$ .
- 7. Let f = f(x, y), where  $x = r \cos \theta$  and  $y = r \sin \theta$ . Prove that

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}.$$

