國立中央大學八十五學年度碩士班研究生入學試題卷

所別: 數學研究所 不分組 科目: 高等微積分 共 / 頁 第 / 頁

每小題 10分, 如作超過十小題時, 將只取得分較高的十題計分.

- 1. (a) Suppose $\sum_{k=1}^{\infty} a_k$ converges absolutely. Prove that $\sum_{k=1}^{\infty} |a_k|^p$ converges for $p \ge 1$.
 - (b) Suppose $\sum_{k=1}^{\infty} a_k$ converges conditionally. Prove that $\sum_{k=1}^{\infty} k^p a_k$ diverges for all p > 1.
- 2. Suppose $\{f_n\}$ is a sequence of continuous functions on [a,b] and $f_n \to f$ uniformly on [a,b].
 - (a) Prove that $\{f_n\}$ is uniformly bounded and f is uniformly continuous on [a,b].
 - (b) Prove that $n^{-1}(f_1+f_2+\cdots+f_n)$ converges to f uniformly on [a,b] as $n\to\infty$.
- 3. State the Mean Value Theorems for differentiation and integral, and prove one of them.
- 4. Suppose f is a real-valued differentiable function on [a, b]. Prove:
 - (a) If $f'(a) < \lambda < f'(b)$, then $\lambda = f'(z)$ for some z in (a, b).
 - (b) If f' is monotonic, then f' is continuous on [a, b].
- 5. State the Weierstrass Approximation Theorem, and use it to prove that if f is a continuous function on [a.b] such that $\int_a^b x^n f(x) dx = 0$ for all $n = 0, 1, 2, \dots$, then $f \equiv 0$.
- 6. Let f(0,0) = 0 and $f(x,y) = \frac{x^3}{x^2 + y^2}$ for $(x,y) \neq (0,0)$.
 - (a) Does the directional derivative $D_u f(0,0)$ exist for any unit vector $u = (u_1, u_2)$?
 - (b) Is f continuous at (0,0)? Why?
 - (c) Is f differentiable at (0,0)? Why?
- 7. Is every continuous function on [0,1] of bounded variation? If yes, prove it; if not, give a counterexample.
- 8. Let f: [a, b] → [m, M] be Stieltjes integrable with respect to a function α, and let φ: [m, M] → R be a continuous function. Prove that the composite function g = φ ∘ f is also Stieltjes integrable with respect to α.
- 9. Compute the explicit value of the integral $\int_0^\infty e^{-x^2} \cos(xt) dx$ for $-\infty < t < \infty$.