系所別:

數學系

科目:

線性代數

LINEAR ALGEBRA

- 1. (a) (10 points) Let A be a diagonal matrix whose diagonal entries are all different. Show that if B is a matrix such that AB = BA, then B is also diagonal.
 - (b) (10 points) Which $n \times n$ matrices B have the property that AB = BA for all $n \times n$ matrices A?
- 2. (a) (10 points) Factor the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = QR,$$

where Q is an orthogonal 4×3 matrix over \mathbb{R} (i.e. $Q^T Q = I$) and R is an upper triangular matrix.

- (b) (5 points) Find the projection of $b = [1, 0, 0, 1]^T$ column space of A.
- (c) (5 points) Find a solution to the problem of minimum ||Ax b|| for all $x \in \mathbb{R}^3$.

3. Let
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$
.

- (a) (10 points) Find a diagonal matrix D and an orthogonal matrix S such that $A = SDS^{-1}$.
- (b) (10 points) Compute A^{20} .
- 4. Suppose that S, T are subspaces of a finite-dimensional vector space V.
 - (a) (10 points) Show that $\dim S + \dim T = \dim(S \cap T) + \dim(S + T)$.
 - (b) (10 points) Let $P_3(\mathbb{R})$ be the space of all polynomials over \mathbb{R} of degree less than or equal to 3. Let S be the subspace of $P_3(\mathbb{R})$ spanned by $1-x+x^2$, $x-x^2+x^3$ and let T be the subspace spanned by 1+x, $x+x^2$, x^2+x^3 . Find bases for S+T and $S\cap T$.
- for S + T and $S \cap T$.

 5. (a) (10 points) Find the Jordan canonical form of $A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$
 - (b) (10 points) How many possible Jordan forms are there for a 7×7 complex matrix with characteristic polynomial $(x + 1)(x-2)^4(x+3)^2$?