

- 1. (20 points) Let F be a field, $n \geq 2$ be an integer, and let V be the vector space of $n \times n$ matrices over F. Let A be a fixed element of V and let T be a linear operator on V defined by T(B) = AB.
- (a) Prove that T and A have the same minimal polynomial.
- (b) If A is diagonalizable, prove, or disprove by counterexample, that T is diagonalizable. (10 pts)
- (c) Do A and T have the same characteristic polynomial? Why or why not? (5pts)
- 2. (20 points) Let V be a finite dimensional vector space over \mathcal{R} and f and g two linear functionals on V. If $\ker f = \ker g$ show that g is a scalar multiple of f.
- 3. (20 points) Let A and B be $n \times n$ matrices with entries from \mathcal{R} .
- (a) Prove that if one of the two matrices, say A, is invertible then AB and BA are similar. (5pts)
- (b) Show that there exist matrices A and B so that AB is not similar to BA. (5pts)
- (c) Prove that the characteristic polynomials of AB and BA are the same.
- 4. (20 points) Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}$.
- (a) Find the Jordan canonical form of A. (10pts)
- (b) Find a matrix T (with entries in C) such that $T^{-1}AT$ is diagonal, or prove that such a matrix does not exist.
- 5. (20 points) Find a matrix whose minimal polynomial is $x^2(x-1)^2$, whose characteristic polynomial is $x^4(x-1)^3$ and whose rank is 5.