博碩士論文 943209006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.159.196
姓名 宋國輝(Guo-Hui Sung)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 太陽光電產氫反應器中MnxTi1-xO2薄膜電極之研究
(The study of MnxTi1-xO2 film electrode in solar photoelectrical hydrogen production reactor)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling
★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析
★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析
★ MOCVD 行星式腔體之模型建立與傳輸現象分析★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬
★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程
★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究★ 高功率LED之熱場模擬與結構分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要探討摻雜不同濃度Mn2+ 離子在不同退火溫度下之TiO2薄膜對光電流的影響。成膜方式主要以溶膠凝膠法,並以旋轉塗佈鍍製備TiO2薄膜,其優點在於製程簡單、成本低廉、產物品質佳且可提高摻雜物均勻性。TiO2薄膜有極佳物理及化學穩定性、高比表面積、高多孔性、高光電化學和光催化性質,但由於TiO2薄膜屬寬能隙,無法在可見光波段被吸收,藉由掺雜Mn2+ 離子以降低TiO2能隙,增加太陽光的吸收,提升光電流產生的效率。在MnxTi1-xO2薄膜中分別取x=0、0.02、0.05及0.1四種不同摻雜量,觀察在空氣氣氛下不同退火溫度對於MnxTi1-xO2的薄膜結構、吸收光譜、光電流性質的影響。本研究發現在550℃退火下,MnxTi1-xO2薄膜結晶性較佳;摻雜Mn2+ 離子後,能隙明顯降低,有利於太陽光的吸收,但會造成光激發後電子-電洞對的再結合效應,透過外加偏壓後能有效分離電子-電洞對,以提升光電流效率。當摻雜Mn2+ 離子濃度增加至10mol%(X=0.1),在固定偏壓0.8V下,可產生最大光電流0.68 mA/cm2。
摘要(英) In this study, we investigated the influence of Mn2+ doped TiO2 thin films ions under different temperature of annealing treatment on photocurrent. The TiO2 thin films were prepared by sol-gel spin coating. There are several advantages in this method like simplity process, lower cost, better product quality, and more dopant uniform. TiO2 has excellent physical and chemical stability, high specific surface area, high porosity, and high photoelectrochemical and photocatalytic activity. Since the undoped-TiO2 films have high energy gap, they are not useful in the visible range. In order to reduce energy gap, we have doped Mn2+ ions into TiO2 films and to enhance the absorption of the visible light. Furthermore, the sol-gel spin coating method was employed to prepare the MnxTi1-xO2 thin films, where x=0, 0.02, 0.05 0.1. We have also studied the structure, absorption spectra, and photocurrent of the MnxTi1-xO2 films in air atmosphere with different annealing temperature. We found that the TiO2 films have good structure with annealing temperature of 550℃ and the energy gap reduces after doping the Mn2+ ions. As results of TiO2 doped Mn2+ ions, the recombination of electrons and holes will be enhanced. In addition, a bias potential can be applied to accelerate the separation of photogenerate electrons and holes to improve efficiency of photocurrent. The TiO2 films with 10 mol% Mn2+ have a max photocurrent value of 0.68 mA/cm2 when annealing temperature was 550℃and the bias potential was 0.8 V.
關鍵字(中) ★ 摻雜錳
★ 光電極
★ 溶膠-凝膠法
★ 二氧化鈦
★ 光電化學
關鍵字(英) ★ PEC
★ photoelectrochemical
★ electrode
★ Mn
★ doping
★ TiO2
論文目次 摘要 …………………………………………………………………I
英文摘要 ……………………………………………………………II
誌謝 …………………………………………………………………III
目錄 …………………………………………………………………IV
表目錄 ………………………………………………………………VII
圖目錄 ………………………………………………………………VIII
符號表 ………………………………………………………………XIII
第一章 緒論 …………………………………………………………1
1.1前言 ………………………………………………………………1
1.2文獻回顧 …………………………………………………………2
1.2.1光觸媒 ……………………………………………………2
1.2.2二氧化鈦 …………………………………………………3
1.2.2.1二氧化鈦的基本結構及性質 ……………………3
1.2.2.2二氧化鈦的製備方法 ……………………………5
1.2.2.3 溶膠-凝膠法(Sol-Gel method) …………6
1.2.3 量子尺寸效應(Quantum Size Effects) ……………9
1.2.4 半導體能帶間隙 ………………………………………11
1.2.5 二氧化鈦摻雜對能隙上的影響 ………………………11
1.2.6 二氧化鈦在太陽能產氫上應用及原理 ………………14
1.3 研究目的 ………………………………………………………17
第二章 實驗方法與內容 ……………………………………………26
2.1實驗方法 .………………………………………………………26
2.2 實驗流程 ………………………………………………………26
2.2.1 TiO2以及Mn1-x TixO2溶液的配置 ……………………26
2.2.2 基板準備 ………………………………………………27
2.2.3薄膜的製作與熱處理 ……………………………………28
2.2.4光電流量測以及試片之準備 ……………………………29
2.3 實驗的量測 ……………………………………………………30
2.3.1晶相結構 …………………………………………………30
2.3.2薄膜厚度和表面結構 ……………………………………30
2.3.3原子力顯微鏡分析 ………………………………………30
2.3.4 紫外光-可見光光譜儀 …………………………………31
2.3.5 光電流量測 ……………………………………………31
2.3.6 還原電位量測 …………………………………………31
第三章 結果與討論 …………….……………………………………38
3.1 MnxTi1-xO2薄膜的晶體結構 …………………………………38
3.2 MnxTi1-xO2薄膜的微觀結構 …………………………………38
3.3 MnxTi1-xO2薄膜的表面形貌 …………………………………40
3.4 紫外光-可見光分光光譜量測 ………………………………40
3.5 光電流量測 ……………………………………………………41
3.5.1 薄膜厚度對光電流的影響 ……………………………41
3.5.2 電解液PH值對光電流的影響 …………………………42
3.5.3 薄膜不同退火溫度及不同摻雜Mn2+ 離子濃度對光電
流的影響 ………………………………………………43
第四章 結論 …………………………………………………………75
參考文獻 ………………………………………………………………77
參考文獻 【1】A. Fujishma, A. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature 238 (1972) 37.
【2】M. Anpo, K. Chiba, “Photocatalytic reduction of CO2 on anchored titanium oxide catalysts”, J. of Mo. Catal. 74 (1992) 207.
【3】T. Mizuno, K. Adachi, K. Ohta, A. Saji, “Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions”, J. Photochem. Photobiol. A: Chem. 98 (1996) 87.
【4】A. Fujishma, T. Inoue, S. Konishi, K. Honda, “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders”, Nature 277 22 (1979) 637.
【5】M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, “Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts”, J. Electroana. Chem. 396 (1995) 21.
【6】T. Mizuno, S. Kaneco, Y. Shimizu, K. Ohta, “Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger”, J. Photochem. Photobiol. A: Chem. 115 (1998) 223.
【7】U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Rep., 48 (2003) 53.
【8】高濂、鄭珊、張青紅 著,陳憲偉 校訂, “奈米光觸媒”, 五南圖書出版股份有限公司.
【9】R. Hengerer, B. Bolliger, M. Erbudak, M. Gratzel, “Structure and stability of the natase TiO2 (101) and (001) surfaces”, Surf. Sci. 460 (2000) 162.
【10】Phase Diagrams for Ceramists Figure 4150~4999, The American Ceramic Society, Inc., 76 (1975).
【11】L. A. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results”, Chem. Rev. 95 (1995) 735.
【12】J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, J. V.Smith “Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K ”, J. Am. Chem. Soc. 109 (1987) 3639.
【13】A. Vittadini, A. Selloni, F. P. Rotzinger, M. Gratzel, “Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surface”, Phys. Rev. lett. 81 (1998) 2954.
【14】T. Bredow, K. Jug, “Theoretical investigation of water adsorption at rutile and anatase surfaces”, Surf. Sci, 327 (1995) 398.
【15】B. E. Yoldas ,“Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters”, J. Mater. Sci. 21 (1986) 1087.
【16】J. Yu, X. Zhao , Zhao Q. , “Photocatalytic activity of nanometer TiO2 thin flms prepared by the sol-gel method ”, Mater. Chem. Phys. 69 (2001) 25.
【17】S. Music, M. Gotic, M. Ivanda, A. Turkovic, R. Trojko, A. Sekulic , K. Furic, “Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure”, Mater. Sci. Eng. B 47, (1997) 33.
【18】H. Sakai, H. Kawahara, M. Shimazaki , M. Abe, “Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition ”, Langmuir 14, (1998) 2208.
【19】L. A. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results”, Chem. Rev., 95 (1995) 735.
【20】Y. Wang, N. Herron, J. Manler, “Linear- and nonlinear-optical properties of semiconductor clusters ”, J. Opt. Soc.Am. B, 6 (1989) 808.
【21】R. Rossetti, J. L. Ellison, J. M. Gibson , L. E. Brus, “Size effects in the excited electronic states of small colloidal CdS crystallites”, J. Chem. Phys. 80 (1984) 4464.
【22】M. Anpo, T. Shima, S. Kodam, “Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates”, J. Phys. Chem., 91 (1987) 4305.
【23】C. Kormann, D. W. Bahnemann, M. R. Hoffmann. “Preparation and characterization of quantum-size titanium dioxide”, J. Phys. Chem. 92 (1988) 5196.
【24】W. Choi, A. Termin, M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics”, J. Phys. Chem., 98 (1994), 13669.
【25】Oriel-Instruments. Book of Photon Tools, (1999). p 1.
【26】T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell,“Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions”, Int. J. Hydrogen Energy 27 (2002) 19
【27】T. Bak et al., “Photo-electrochemical hydrogen generation from water usingsolar energy. Materials-related aspects”, Int. J. Hydrogen Energy 27 (2002) 991.
【28】G. Zhao, H. Kozuka, H. Lin, M. Takahashi, T. Yoko, “Preparation and photoelectrochemical properties of Ti1-xVxO2 solid solution thin film photoelectrodes with gradient bandgap”, Thin Solid Films 340 (1999) 125.
【29】K. Lee, N.H. Lee, S.H. Shin, H.G. Lee, S.J. Kima, “Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols”, Mater. Sci. Eng. B 129 (2006) 109.
【30】E. Dorjpalam, M. Takahashi, T. Yokoa, “Cr3+–TiO2 Thin-Film Electrodes Effects of the Homogeneous and Sectional Doping”, J. Electrochem. Soc, 153 (6) (2006) G534.
【31】R.S. Sonawane, B.B. Kale, M.K. Dongare, “Preparation and photo- catalytic activity of Fe-TiO2 thin films prepared by sol–gel dip coating”, Mater. Chem. Phy. 85 (2004) 52.
【32】Q. Chen, Y. Qian, Z. Chen, G. Zhou, Y. Zhang, “Preparation of TiO2 powders with different morphologies by an oxidation-hydrothermal combination method”, Mater. Lett. 22 (1995) 77.
【33】J. J. Sene, W. A. Zeltner, M. A. Anderson, “Fundamental photoelectrocatalytic and plectrophoretic mobility studies of TiO2 and V-doped TiO2 thin-film electrode materials”, J. Phys. Chem. B 107 (2003) 1597.
【34】J. Y. Shi, W. H. Leng, W. C. Zhu, J. Q. Zhang, C. N. Cao, “Electrochemically assisted photocatalytic oxidation of Nitrite over Cr-doped TiO2 under visible light”, Chem. Eng. Technol., 29 (2006) No. 1.
【35】Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai, “Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrode”, Thin Solid Films 349 (1999) 120.
【36】H. Jiang, L. Gao, “Enhancing the UV inducing hydrophilicity of TiO2 thin film by doping Fe ions”, Mater. Chem. Phy. 77 (2002) 878.
【37】B.M. Lee, D.Y. Shin, S.M. Han, J. Kor. Cerm. Soc. 37 (2000) 308–313.
【38】S. Sen, S. Mahanty, S. Roy, O. Heintz, S. Bourgeois, D. Chaumont, “Investigation on sol–gel synthesized Ag-doped TiO2 cermet thin films”, Thin Solid Films 474 (2005) 245.
【39】X. Zhang, F. Zhang, K. Y. Chan, “The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties”, Mater. Chem. Phy. 97 (2006) 384.
【40】S. Yang., X. Quan, X. Li, Y. Liu, S. Chen and G. Chen, “ Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation”, Phys. Chem. Chem. Phys. 6 (2004) 659.
【41】J. Gottsche, H. Hinsch , V. Wittrver, “Electrochromic mixed WO3-TiO2 thin films produced by sputtering and the sol-gel technique: A comparison”, Sol. Energy Mater. Sol. Cells 31 (1993) 415.
【42】J. Shiyanovskaya and M. Hepel, “Bicomponent WO3 / TiO2, Films as. Photoelectrodes”, J. Electrochem. Soc. 146 (1999) 243.
【43】Y. Wu, L. Hu, Z. Jiang and Q. Ke, “Study on the Electrochemical Properties of Fe2O3-TiO2 Films Prepared by Sol-Gel Process”, J. Electrochem. Soc.(1997), 144.
【44】D. Liu , P. V. Kamat, J. Phys. Chem., 97 (10) (1993) 769.
【45】Q. Shen, D. Arae, T. Toyoda, “Photosensitization of nanostructured TiO2 with CdSe quantum dots effects of microstructure and electron transport in TiO2 substrates”, J. Photochem. Photobiol. A: Chem. 164 (2004) 75.
【46】R. Suarez, P. K. Nair , P. V. Kamat, “Photoelectrochemical behavior of Bi2S3 nanoclusters and nanostructured thin films”, Langmuir, 14 (1998) 3236.
【47】Harriet Kung, “Basic Research Needs for the Hydrogen Economy”, U.S. Department of Energy (2003) May 13.
【48】J. L. Cao, Z. C. Wu, J. Q. Zhang, “ Photostability study of nanoporous TiO2 film electrodes in different pH solutions”, J. Electroanal. Chem. 595 (2006) 71.
【49】Y. Fu and W. Cao, “The effect of potential on the electron-trapping process of surface states in nanocrystalline TiO2 film electrode”, J. Appl. Phys. 100 (2006) 084324.
【50】Y. Wang, H. Cheng, “Photoelectrochemical properties of metal- ion-doped TiO2 nanocrystalline electrodes”, Thin solid Films 349 (1999) 120.
【51】K. L. Frindell, J. Tang, J. H. Harreld, G. D. Stucky, “Enhanced Mesostructural Order and Changes to Optical and Electrochemical Properties Induced by the Addition of Cerium(III) to Mesoporous Titania Thin Films”, Chem. Mater. 16 (2004) 3524.
【52】Z. Zainal, C. Y. LEE, “Properties and Photoelectrocatalytic Behaviour of Sol-Gel Derived TiO2 Thin Films”, J. Sol-Gel Sci. Techn. 37 (2006) 19.
【53】Keenan. Wood. Kleinfelter 著, 陶雨台 譯, 大學普通化學, 曉園出版社有限公司.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明