博碩士論文 953209006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.116.90.141
姓名 劉人豪(Jen-hao Liu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 元素揮發對Mg-Ni-Li合金儲放氫特性之影響
(Effect of element evaporation on the hydrogen storage properties of Mg-Ni-Li alloy)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ LaNi5對Mg2Ni合金電極性質之影響
★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討
★ 鈧對Al-7Si-0.6Mg合金機械性質影響★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 高壓氫壓縮機用之儲氫合金開發★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響
★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響
★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響
★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響
★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究★ 固溶處理對Al-9.0Zn-2.3Mg-xCu合金機械性質與腐蝕性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗於鑄態過共晶Mg-Ni合金(hypereutectic Mg-Ni alloy)中添加Li,觀察Li於300℃高溫下之揮發穩定性對過共晶(Mg-Ni)合金儲放氫特性之影響。
由X光繞射分析得知,鑄態Mg82Ni18合金為Mg與Mg2Ni兩相所構成,而含2 wt.% Li之Mg82Ni18合金為Mg(Li)與Mg2Ni兩相所構成,當Li含量增加至5 wt.%時,Mg(Li)固溶體將轉變成Li(Mg)固溶體結構,但其Li繞射峰角度與純Li之繞射峰角度無明顯差異。
經300 ℃之充分活化後,由於Li的揮發,造成含Li合金之結構回復為不含Li之Mg82Ni18合金結構,但其吸放氫量並無法回復,且隨著Li含量之增加而遞減。其中,含Li之Mg82Ni18合金隨著Li的揮發,共晶Mg與Mg2Ni的結合性降低,導致Mg2Ni催化能力降低,以致於催化距離減少,致使Mg元素吸放氫平台長度大幅縮短。此外,因Li的揮發,亦造成Mg2Ni之吸氫平台亦有微幅降低的現象。
摘要(英) In this study, Li was added in hypereutectic Mg-Ni alloys for researching the effect of Li addition and evaporation on the hydrogen storage properties of hypereutectic Mg-Ni alloy.
From XRD, there were only Mg and Mg2Ni phases exiting in the as-cast Mg82Ni18 alloy. But Mg(Li) and Mg2Ni phases was observed in the as-cast Mg82Ni18 alloy with 2 wt.% Li. When Li contents enhanced to 5 wt.%, the phases transferred to Li and Mg2Ni.
The structure of Mg82Ni18 alloys with Li contents returned to Mg and Mg2Ni phases after Li evaporation, but the hydrogen capacity decreased with Li contents increasing. The length of first plateau (Mg+H2 → MgH2) decreased appreciably, it is assumed Li addition and evaporation in Mg82Ni18 alloy weaken the bonding of eutectic Mg with Mg2Ni and decreased catalyzing effect of Mg by Mg2Ni. Otherwise, the length of second plateau(Mg2Ni+2H2 → Mg2NiH4) also decreased slightly.
關鍵字(中) ★ 儲放氫特性
★ XRD
★ Mg82Ni18
★ Li
關鍵字(英) ★ XRD
★ hydrogen storage
★ Li
★ Mg82Ni18 alloys
論文目次 中文摘要....................................................i
英文摘要...................................................ii
誌謝......................................................iii
總 目 錄...................................................iv
圖 目 錄...................................................vi
表 目 錄..................................................vii
一、 前言與文獻回顧...................................1
1.1 儲氫合金簡介.....................................1
1.2 儲氫合金種類與介紹...............................2
1.3 儲氫合金儲放氫基本原理...........................4
1.3.1 動力學性質.......................................4
1.3.2 熱力學性質.......................................5
1.4 Mg-Ni-Li儲氫合金介紹.............................8
1.5 研究背景與目的...................................9
二、 實驗步驟與方法..................................10
2.1 製備合金流程....................................12
2.2 球磨合金流程....................................12
2.3 X 光繞射分析(X-ray diffraction methods,XRD) ...12
2.4 感應耦合電漿質譜儀(Inductively coupled plasma -
Atomic emission spectrometer)成分分析.........12
2.5 合金儲放氫特性測試..............................12
2.5.1 PCI曲線(Pressure-composition-isothermal curves,
PCI)測試........................................13
三、 結果與討論......................................14
3.1 結構分析........................................14
3.1.1 鑄態結構分析....................................14
3.1.2 儲放氫前後之結構分析............................18
3.2 儲放氫特性 .....................................21
3.3 充分氫化後之結構分析............................23
3.4 共晶(Mg-Mg2 Ni)催化模型..........................25
四、 結論............................................28
五、 未來研究與方向..................................29
六、 參考文獻........................................30
附錄一 Mg-Ni-Li合金揮發性之探討........................33
附錄二 Mg2 Ni對Mg催化性之探討...........................39
參考文獻 [1] B.D. Solomon, A.Banerjee, “A Global Survey of Hydrogen Energy Research”, Development and Policy, Energy Policy, Vol.34, p.781, 2006.
[2] S. Ashley, 「氫燃料電池車乾淨上路」, 科學人雜誌, p.40, 2005年4月號.
[3] H. Woolf, I. Brown, M. Bowden, “Light metal hydrides – Potential hydrogen storage materials”, Current Applied Physics, Vol. 8, p. 459, 2008.
[4] A. Zuttel, “Materials for Hydrogen Storage”, Materials Today, Vol.6, p.24, 2003.
[5] 經濟部能源局, 「金屬儲氫應用技術研討會」, p.4, 2005.
[6] S. Satyapal , et al., “The U.S. Department of Energy’s National Hydrogen Storage Project : Progress towards meeting hydrogen-powered vehicle requirements”, Catalysis Today , Vol.120, p.246, 2007.
[7] J.J. Reilly, R.H. Wiswall,“The Reaction of Hydrogen with Alloys of Magnesiumand Nickel and the Formation of Mg2NiH4”, Inorg. Chem., Vol.7, p.2254, 1968.
[8] J.H.N. Vucht, F.A. Kuijpers, H.C.A.M Bruning, “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Res. Repts., Vol.25, p.133, 1970.
[9] J.J. Reilly, R.H. Wiswall, “Formation and Properties of Iron Titanium Hydride”, Inorg. Chem., Vol.13, p.218, 1974.
[10] L. Schlapbach, A. Zuttel, “Hydrogen-storage materials for mobile applications”, Nature, Vol.414, p.353, 2001.
[11] R. Janot, et al., “Fast Hydrogen Sorption Kinetics for Ball Milled Mg2Ni Alloys”, Journal of Physics and Chemistry of Solids, Vol.65, p.529, 2004.
[12] M. Martin, et al., “Absorption and desorption kinetics of hydrogen storage alloys”, Journal of Alloys and Compounds, Vol.238, p.193, 1996.
[13] A. Anani, et al., “Alloys for Hydrogen Storage in Nickel/Hydrogen and Nickel/Metal Hydride Batteries”, Journal of Power Sources, Vol.47, p.261, 1994.
[14] A. Seiler, et al., ” Surface analysisof Mg2Ni-Mg, Mg2Ni and Mg2Cu”, Journal of the Less-Common Metals, Vol.73, p.193, 1980.
[15] A. Zaluska , L. Zaluski, J.O. Strom–Olsen, “Nanocrystalline magnesium for hydrogen storage”, Journal of Alloys and Compounds, Vol.288, p.217, 1999.
[16] G. Liang, “Synthesis and hydrogen storage properties of Mg-based alloys”, Journal of Alloys and Compounds, Vol.370, p.123, 2004.
[17] C.D. Yim, et al., “Hydriding properties of Mg–xNi alloys with different microstructures”, Catalysis Today, Vol.120, p.276, 2007.
[18] G. Liang , et al., “Mechanical alloying and hydrogen absorption properties of the Mg–Ni system”, Journal of Alloys and Compounds, Vol.267, p.302, 1998.
[19] H. Yang , et al., “Characteristics of Mg2Ni0.75M0.25 (M5Ti, Cr, Mn, Fe, Co, Ni, Cu and Zn) alloys after surface treatment”, Journal of Alloys and Compounds, Vol.330-332, p.640, 2002.
[20] M.Y. Song, et al., “Hydrogen-storage properties of Mg–23.5Ni–(0 and 5)Cu prepared by melt spinning and crystallization heat treatment”, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, Vol.33, p.1711, 2008.
[21] K.Chuntonov, et al., “New lithium gas sorbent III. Experimental data on evaporation”, Journal of Alloys and Compounds, Available online, 2007.
[22] M. Gupta , R.P. Gupta, “First principles study of the destabilization of Li amide–imide reaction for hydrogen storage”, Journal of Alloys and Compounds, Vol.446–447, p.319, 2007.
[23] J.F. Nachman, D.A. Rohy, in: T.N. Veziroglu (Ed.), Proceedings ofthe Miami International Symposium on Metal–Hydrogen Systems,Miami beach, FL, 13–15 April 1981, p. 557, Pergamon Press, New York, 1982.
[24] A.A. Nayeb-Hashemi, J.B. Clark, Bull. “Alloy Phase Diagrams”, Vol.6, p.238, 1985.
[25] T.B. Massalski, et al., “Binary Alloy Phase Diagrams”, American Society for Metals, 1990.
指導教授 李勝隆(Sheng-long Lee) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明