博碩士論文 82343021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.133.12.172
姓名 王聲榕(Sun-Run Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 力量控制在循跡系統上的應用
(Application of Force Control on a Robot Manipulator for 2D Unknown Trajectory Following)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於工作路徑或工件外形不明的狀況下,由於無法事先得到預期的路徑或外形,多數的順應性控制器 (Compliant controller) 都失去效用。本文將分別提出模糊控制器及適應性控制器 (Adaptive controller),應用於機械臂循跡及三次元外形量測系統上。
在執行循跡控制時,將根據量測得到的接觸力,針對其法線方向進行力量控制,而在切線方向進行位置控制,由控制器自動產生預期的工作路徑或工件外形,這是本論文的主要研究目的及貢獻。
在追隨工件的路徑或外形的應用上,傳統上以雷射或 CCD 識別系統來解決這種問題。但是,這種雷射或 CCD 識別系統相當複雜,而且會受限於環境的狀況。本論文採用的模糊控制器及適應性控制器,可以自我調適 (self-tuning),讓機械臂可以自動追隨不明的路徑或外形。在機械臂上裝置終端效應器 (end-effector),其中具有力量感測器 (force sensor)。力量感測器可以量測接觸力的大小及方向,藉由解析及控制接觸力的大小和方向,來決定不明的工作路徑或工件外形的軌跡。
在本論文中,發展出自我調適的模糊控制器,當機械臂接觸到工件時,控制器依據維持接觸力法線方向的大小不變的原則,控制終端效應器的位置,並根據接觸力的切線方向,決定機械臂的行進方向。重複這種不斷的調整及移動,最後即可決定出期望的工作路徑或工件外形。實驗結果顯示,應用這種控制器來尋找工作路徑或量測工件外形,都可以得到相當不錯的結果。這個方法可以應用於自動焊接系統的焊道循跡、機械工件去毛邊及倒角、3D工件外形量測...等。
摘要(英) For the case of unknown contour, most controllers for compliant motion fail since the desired trajectory cannot be obtained. However, in this study, when performing compliant motion, with the magnitude of the contact force remains constant, the desired trajectory is generated from the controller based on the tangential direction of the measured contact force, which is the major merit of our paper. For the application of tracking the path on the workpieces, the laser system or CCD (Change Couple Device) identification system is generally used as one of the popular resolutions. However, the implementation of laser system or CCD identification system is highly complex and environmental-limited. This study presents a functional compliant motion controller by applying the self-tuning fuzzy control to have a robot manipulator implement tracking tasks on the unknown paths. The manipulator has its end-effector installed with a force sensor. With the aid of the self-tuning fuzzy controller, this control system results the smoothly path-tracking on a workpiece. A radius compensating method is used to correct the measured data and then leads to the “real” path or contour of the workpiece. The experiments performed have successfully demonstrated the feasibility of the proposed control algorithms.
For anothor study in this paper, our design of the controller is based on adaptive control scheme. The position and the contact force of end-effector are controlled by feed forward and feedback controller. By applying these controllers, the manipulator can be adapted to the curved surface of environment, and can have close contact with the curved surface. The contour of workpieces can then be measured accordingly.
關鍵字(中) ★ 自我調適
★ 適應性控制
★ 前饋控制
★ 路徑追隨
★ 半徑補償
★ 模糊控制
★ 順應性控制
★ 機械人
關鍵字(英) ★ path tracking
★ radius compensation
★ fuzzy control
★ compliance control
★ manipulator
★ robot
★ self-tuning
★ adaptive control
★ feed forward control
論文目次 Contents I
List of Figures III
List of Tables VI
1. Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.3 Organization 5
2. On the Working Path Tracking Implemented by a Robot Manipulator 6
2.1 Introduction 6
2.2 Dynamic model of the robot manipulator 6
2.3 Design of the fuzzy controller 8
2.4 Experimental setup and results 12
2.5 Conclusion 14
3. Application of Self-tuning Fuzzy Controller for a Cartesian Manipulator on
Unknown Contours 36
3.1 Introduction 36
3.2 Contact force of compliant motion 37
3.3 Design of the controller 38
3.4 Experimental setup and results 39
3.5 Conclusion 42
4. Application of MRAC Theory for Adaptive Control of Constrained Robot
Manipulator 56
4.1 Introduction 56
4.2 System modeling 57
4.3 Compliance analysis 59
4.4 Design of compliant controller 61
4.5 Illustrative Experiment 68
4.6 Discussion and conclusion 69
5. Conclusion and future works 86
References 87
Appendix A. Kinematics of the Robot 92
參考文獻 [1] M. H. Raibert, J. J. Craig, "Hybrid position/force control of manipulators," Trans. ASME J. of Dyn. Systems, Measurement and Control, vol. 102, pp. 126-133, 1981.
[2] N. Hogan, "Impedance Control: An approach to Manipulation: Part I - Theory, Part II - Implementation, Part III - Application," Trans. ASME J. of Dyn. Systems, Measurement, and Control, vol. 107, pp. 1-24, 1985.
[3] H. Kazerooni, B. J. Waibel, and S. Kim, "On the stability of robot compliant motion control: theory and experiments," Trans. ASME J. of Dynamic Systems, Measurement, and Control, vol. 112, pp. 417-426, 1990.
[4] N. Hogan, "On the stability of manipulators performing contact tasks," IEEE Trans. on Robotics and Automation, vol. 4, pp. 667-686, 1988.
[5] S. Z. He et al., "Control of dynamical processes using an on-line rule-adaptive fuzzy control system," Fuzzy Sets and Systems, vol. 54, pp. 11-22, 1993.
[6] M. A. Llama, V. Santibanez, R. Kelly, J. Flores, "Stable fuzzy self-tuning computed-torque control of robot manipulators," in Proc. IEEE Int. Conf. on Robotics and Automation, Part 3 (of 4), 1998.
[7] K. C. Fan, "Non-contact automatic measurement for free-form surface profiles," Computer Integrated Manufacturing Systems, vol. 10, no. 4, pp. 277-285, 1997.
[8] F. Y. Hsu, L. C. Fu, "Intelligent robot deburring using adaptive fuzzy hybrid position/force control," IEEE Trans. on Robotics and Automation, vol. 16, no. 4, pp. 325-335, 2000.
[9] R. Paul, B. Shimano, "Compliance and control," in Proc. 1976 Joint Automatic Control Conference, pp. 694-699, 1976.
[10] M. T. Mason, "Compliance and force control for computer controlled manipulators," IEEE Trans. Sys., Man, Cybern., vol. SMC-11, no. 6, pp. 418-432, 1981.
[11] J. K. Salisbury, "Active stiffness control of a manipulator in Cartesian Coordinates," in Proc. 19th IEEE Conf. Decision Contr., vol. 1, pp. 95-100, Dec. 1980.
[12] H. Kazerooni, "Compliant motion control for robot manipulators," Int. J. of Control, vol. 49, no. 3, 1989.
[13] R. E. Goddard, Y. F.Zheng, H. Hemami, "Dynamic hybrid velocity/force control of robot compliant motion over globally unknown objects," IEEE Trans. on Robotics and Automation, vol. 8, no. 1, February 1992.
[14] H. Seraji, "A new approach to adaptive control of manipulators," ASME J. of Dynamic Systems, Measurement, and Control, vol. 109, September 1987.
[15] T. A. Lasky, T. C. Hsia, "On force-tracking impedance control of robot manipulators," in Proc. IEEE Int. Conf. on Robotics and Automation, April 1991.
[16] W. S. Lu, Q. H. Meng, "Impedance control with adaptation for robotic manipulations," IEEE Trans. on Robotics and Automation, vol. 7, no. 3, June 1991.
[17] J. K. Mills, A. A. Goldenberg, "Force and position control of manipulators during constrained motion tasks," IEEE Trans. on Robotics and Automation, vol.5, no.1, February 1989.
[18] H. Kazerooni, T. B. Sheridan, P. K. Houpt, "Robust compliant motion for manipulators, Part I: The fundamental concepts of compliant motion; Part II: Design method," IEEE J. Robotics Automation, Vol. RA-2, no. 2, pp. 83-105, June 1986.
[19] T. Sugie, T. Yoshikawa, and T. Ono, "Robust controller design for robot manipulators," ASME J. of Dynamic Systems, Measurement, and Control, vol. 110, no. 1, pp.94-96, March 1988.
[20] T. Yoshikawa, T. Sugie, and M. Tanaka, "Dynamic hybrid position/ force control of robot manipulators - controller design and experiment," in Proc. IEEE Int. Conf. on Robotics and Automation, vol. 4, no. 6, pp. 699-705, December 1988.
[21] T. Yoshikawa, "Dynamic hybrid position/ force control of robot manipulators - description on hand constraint and calculation of joint driving force," in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1393-1398, 1986.
[22] F. Y. Hsu, L. C. Fu, "Adaptive robust fuzzy control for robot manipulators," in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 629-634, 1994.
[23] F. Y. Hsu, L. C. Fu, "A new design of adaptive fuzzy hybrid force/position controller for robot manipulators," in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 863-868, 1995.
[24] F. Y. Hsu, L. C. Fu, "A new adaptive fuzzy hybrid force/position control for intelligent robot deburring," in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2476-2481, 1999.
[25] R. K. Mudi, N. R. Pal, "A robust self-tuning scheme for PI- and PD-type fuzzy controllers," IEEE Transactions on Fuzzy Systems, vol. 7, no. 1, pp.2-16, 1999.
[26] M. R. Emami, A. A. Goldenberg, I. B. Turksen, "A robust model-based fuzzy-logic controller for robot manipulators," in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2500-2505, 1998.
[27] F. Azam, H. F. VanLandingham, "A generalized fuzzy adaptive control method," in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2083-2088, 1998.
[28] K. C. Jeong, S. H. Kwon, D. H. Lee, M. W. Lee, J. Y. Choi, "A fuzzy logic-based gain tuner for PID controllers," in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 551-554, 1998.
[29] Y. Q. Dai, A. A. Loukianov, M. Uchiyama, "A hybrid numerical method for solving the inverse kinematics of a class of spatial flexible manipulators," in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3449-3454, 1997.
[30] D. Xiao, B. K. Ghosh, N. Xi, T. J. Tarn, "Sensor-based hybrid position/force control of a robot manipulator in an uncalibrated environment," Control Systems Technology, IEEE Transactions, Vol. 8, Issue 4, pp. 635-645, July 2000
[31] R. J. Schilling, "Fundamentals of robotics: analysis and control," Prentice Hall, 1990.
[32] J. J. Craig, Introduction to Robotics Mechanics and Control, Addison-Wesley, 2nd Edition, 1989.
[33] J. J. Craig, Adaptive Control of Mechanical Manipulators, Addison-Wesley, 1988.
[34] H. Butler, Model Reference Adaptive Control, Prentice Hall, 1992.
[35] D. Driankov, R. Palm, Advances in Fuzzy Control, Physica-Verlag, 1998.
[36] H. K. Khalil, Nonlinear System, Prentice Hall, 1996.
指導教授 董必正(Pi-Chen Tung) 審核日期 2002-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明