參考文獻 |
[1] Y. C. Fung, Foundation of Solid Mechanics, Prentice-Hall, Inc. Englewood
Cliffs, N. J., 1968.
[2] R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s
ratio = -1”, Journal of Elasticity, Vol. 15, pp. 427-430, 1985.
[3] K. E. Evans, “Tensile network microstructures exhibiting negative Poisson’
s ratios”, Journal of Physics D: Applied Physics, Vol. 22, pp. 1870-1876,
1989.
[4] U. D. Larsen, O. Sigmund and S. Bouwstra, “Design and fabrication of
compliant micromechanisms and structure with negative Poisson’s ratio”,
Journal of micrielectromechanical systems, Vol. 6, No. 2, pp. 99-106, 1997.
[5] R. Lakes, “Foam structures with a negative Poisson’s ratio”, Science,
Vol. 235, pp. 1038-1040, 1987.
[6] B. D. Caddock and K. E. Evans, “Microporous materials with negative
Poisson’s ratios: I. Microstructure and mechanical properties”, Journal
of Physics D: Applied Physics, Vol. 22, pp. 1877-1882, 1989.
[7] K. E. Evans and B. D. Caddock, “Microporous materials with negative
Poisson’s ratios: II. Mechanisms and interpretation”, Journal of Physics
D: Applied Physics, Vol. 22, pp. 1883-1887, 1989.
[8] W. E. Warren and A. M. Kraynik, “Foam mechanics: The linear elastic
response of two-dimensional spatially periodic cellular materials”,
Mechanics of Materials, Vol. 6, pp. 27-37, 1987.
[9] T. L. Warren, “Negative Poisson’s ratio in a transversely isotropic foam
structure”, Journal of Applied Physics, Vol. 6, No. 15, pp. 7591-7594,
1990.
[10] J. B. Choi and R. S. Lakes, “Non-linear properties of polymer cellular
materials with a negative Poisson’s ratio”, Journal of Materials
Science, Vol. 27, pp. 4678-4684, 1992.
[11] J. Lee, J. B. Choi and K. Choi, “Application of homogenization FEM
analysis to regular and re-entrant honeycomb structures”, Journal of
Materials Science, Vol. 31, pp. 4105-4110, 1996.
[12] J. B. Choi and R. S. Lakes, “Design of a fastener based on negative
Poisson’s ratio foam”, Cellular Polymers, Vol. 10, No. 3, pp. 205-212,
1991.
[13] W. Voigt, “Theoretische studin uber die elasticitusverhultnisse der
kystall”, Ahandlungen der konigllshaft der wissenshaften zu gottingen,
Vol. 24, Gottingen, 1887.
[14] E. Cosserat and F. Cosserat, “Theorie des corps deformables”, Paris, A.
Hermann and Sons. 1909.
[15] R. D. Mindlin and H. F. Tierstn, “Effects of couple stress in linear
elasticity”, Archive for Rational Mechanics and Analysis, Vol. 11, pp.
415-448, 1962.
[16] A. E. Green and R. S. Rivlin, “Directors and multipolar displacements in
continuum mechanics”, International Journal of Engineering Science, Vol.
2, pp. 611-620, 1965.
[17] A. C. Eringen and E. S. Suhubi, “Nonlinear theory of simple micro-elastic
solids-I“, International Journal of Engineering Science, Vol. 2, pp. 189-
203, 1964.
[18] A. C. Eringen, “Linear theory of micropolar elasticity”, Journal of
Mathematics and Mechanics, Vol. 15, No. 6, pp. 909-923, 1966.
[19] A. C. Eringen, “Theory of micropolar fluids”, Journal of Mathematics and
Mechanics, Vol. 16, pp. 1-18, 1966.
[20] A. C. Eringen, Fracture, in Liebowitz, M. (Ed.), Academic Press, New York,
2, pp. 621-729, 1968.
[21] T. R. Tauchert, W. D. Claus and T. Ariman, “The linear theory of
micropolar thermoelasticity”, International Journal of Engineering
Science, Vol. 6, pp. 37-47, 1968.
[22] D. Iesan, “Existence theorems in the theory of micropolar elasticity”,
International Journal of Engineering Science, Vol. 8, pp. 777-791, 1970.
[23] P. P. Teodorescu (Editor), Actual Problems in Solid Mechanics, Vol. 1,
ed., Academiei, Bucharest, 1975.
[24] L. Dragos, “Fundamental solutions in micropolar elasticity”,
International Journal of Engineering Science, Vol. 22, pp. 265-275, 1984.
[25] S. C. Cowin, “An incorrect inequality in micropolar elasticity theory”,
Zeitschrift fur Angewandte Mathematik und Physik: ZAMP (Journal of Applied
Mathematics and Physics), Vol.21, pp. 494-497, 1970.
[26] R. D. Gauthier, Analytical and Experimental Investigations in Linear
Isotropic Micropolar Elasticity, doctoral dissertation, University of
Colorado, 1974.
[27] R. D. Gauthier and W. E. Jahsman, “A quest for micropolar elastic
constants”, Journal of Applied Mechanics, Transactions of ASME, Vol. 42,
pp. 369-374, 1975.
[28] J. F. C. Yang and R. S. Lakes, “Transient study of couple stress effects
in compact bone: torsion”, Journal of Biomechanical Engineering,
Transactions of ASME, Vol. 103, pp. 275-279, 1981.
[29] R. S. Lakes, “Dynamical study of couple stress effects in human compact
bone”, Journal of Biomechanical Engineering, Trans-actions of ASME, Vol.
104, pp. 6-11, 1982.
[30] S. Nakamura, R. Benedict and R. Lakes, “Finite element method for
orthotropic micropolar elasticity”, International Journal of Engineering
Science, Vol. 22, No. 3, pp. 319-330, 1984.
[31] J. T. Yeh and W. H. Chen, “Shell elements with drilling degree of
freedoms based on micropolar elasticity theory”, International Journal
for Numerical Methods in Engineering, Vol. 36, pp. 1145-1159, 1993.
[32] F. Y. Huang and K. Z. Liang, ”Torsional analysis of micropolar elasticity
using the finite element method”, International Journal of Engineering
Science, Vol. 32, No. 2, pp. 347-358, 1994.
[33] C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, Boundary Element
Techniques, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1984.
[34] C. A. Brebbia and J. Dominguez, Boundary Elements: An Introductory Course,
Computational Mechanics Publication, Southampton Boston, 1989.
[35] A. N. Das and P. K. Chaudhuri, “A note on boundary elements for
micropolar elasticity”, International Journal of Engineering Science,
Vol. 30, No. 3, pp. 397-400, 1992.
[36] K. Z. Liang and F. Y. Huang, “Boundary element method for micropolar
elasticity”, International Journal of Engineering Science, Vol. 34, No.
5, pp. 509-521, 1996.
[37] F. Y. Huang and K. Z. Liang, “Boundary element analysis of stress
concentration in micropolar elastic plate”, International Journal for
Numerical Methods in Engineering, Vol. 40, pp. 1611-1622, 1997.
[38] F. Y. Huang, B. H. Yan, J. L. Yan and D. U. Yang, “Bending analysis of
micropolar elastic beam using 3-D finite element method”, International
Journal of Engineering Science, Vol. 38, pp. 275-286, 2000.
[39] T. R. Chandrupatla and A. D. Belegundu, Introduction to Finite Element in
Engineering, 2nd ed. Prentice-Hall International, Inc, 1997.
[40] S. Nakamura and R. Lakes, “Finite element analysis of Saint-Venant end
effects in micropolar elastic solids”, Engineering Computations. Vol. 12,
pp. 571-587, 1995.
[41] E. Hinton and D. R. J. Owen, An Introduction to Finite Element
Computations, Swansea, UK: Pineridge Press, 1979; Taipei: Kai Fa Book,
1982.
[42] T. Y. Yang, Finite Element Structural Analysis, Prentice-Hall, Inc.
Englewood Cliffs, N. J., 1986. |