博碩士論文 86343002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.142.172.190
姓名 徐道賢(Tao-Hsien Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 航太葉片座標定位與翼形面檢測技術發展
(On the Development of the Coordinate Setup and Airfoil Profile Inspection Technique for Blades)
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ CAD模型基礎擠出物之實體網格自動化建構技術發展
★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析
★ 薄殼零件薄殼本體之結構化實體網格自動建構技術發展★ Boss特徵之結構化實體網格自動化建構技術發展
★ 應用於模流分析之薄殼元件CAD模型特徵辨識與分解技術發展★ 實體網格建構對於塑膠光學元件模流分析 之影響探討
★ 螺槳葉片逆向工程CAD模型重建與檢測★ 電腦輔助紋理影像辨識與點資料視覺化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 葉片是航空發動機中非常重要的零件之一,葉片的幾何造型與製造品質對發動機的性能及壽命有相當大的影響,因此品管檢驗的過程相當重要。葉片在製造加工及檢測過程中,都需要利用設計藍圖上所規範的基準面或基準點來建立座標系統。傳統檢測過程中,座標系統的建立往往都是以人為手動操作的方式來完成,不僅耗時也不夠精確,更別說座標的重現性。研究中針對藍圖所見的眾多類型基準點加以分類,並提出各種基準點的量測方法,達到自動化精確量測的目標。葉片檢測座標主要是還原與加工時相同的座標系統,由於葉片加工完成後座標系統就不存在,檢測時就需依據藍圖重建加工座標系統。研究中亦根據藍圖定義的座標系統發展出三基準平面定座標與疊代六基準點定座標的方法,完整重建加工時的座標系統。
葉片檢測著重於葉片翼形輪廓以及各項尺寸誤差分析,當座標系統建立完成後,需要量測葉片等高度翼形剖面的輪廓以進行檢測,加上翼形面造型特殊,傳統量測方式實不足以應付翼形面的量測。本研究針對翼形面量測方式提出離線量測規劃,提供葉片有原始CAD模型時的量測,當無原始模型或加工誤差較大的葉片也提出兩階段量測規劃,發展等高度量測方法,精確量測翼形剖面,針對翼形前/後緣曲率變化大的部分,也發展搜尋量測法,降低量測資料的不平滑性。
藍圖上僅針對翼形參數作定義及規範公差範圍,要從翼形剖面的量測資料中直接計算各項參數,以及分析翼形輪廓誤差,非常困難。本研究針對葉片翼形發展一套分析技術,主要目的在於自動計算翼形的各項參數以及外型輪廓的誤差分析,透過量測點資料與CAD模型公稱曲線的比對,提出最佳化定位方法,利用在曲線上搜尋與量測點最短距離,以及計算空間轉換矩陣修正座標,反覆疊代達到最佳化定位的流程,依據最佳化的結果進行翼剖面分析技術與形狀誤差分析。
本研究對葉片檢測發展出一套完整的自動化流程,包括(1)葉片基準點量測法:針對不同類型基準點做精確量測,(2)葉片座標定位演算法:還原加工座標以確保量測準確,(3)葉片翼形面量測方法:準確而完整的量測葉片翼形剖面,(4)葉片翼形分析技術:分析葉形各項幾何參數、翼形輪廓度、定位度分析等檢測技術,(5)自動化流程:提高精度、速度,節省時間、降低成本,經過許多葉片量測結果證實其可行性,並已成功應用於國內多家航太製造廠商的葉片檢測與分析上。
摘要(英) The blade is the most important component in aircraft engines while its geometry and the corresponding manufacturing quality significantly affect the engine’s performance and life time. Therefore, the inspection is very important procedure for quality assurance. However, the reconstruction of the datum planes and the datum points referring to the blueprint and the manufacturing machine is difficult for the initialization of the inspection procedure. The traditional methods are based the operator’s experience and relied on the manually operations. This is not only time consuming but also lacking accuracy. The coordinate reconstruction is very difficult to achieve in this way. This research categorizes several procedures from most kind blades from blueprint to determine the datum points and datum planes for automatic inspection. The purpose of these proposed procedures is to reconstruct the inspection coordinate system as that in the manufacturing stage. Both of three-plane method and six-point iteration method may apply to rebuild the manufacturing coordinate system in the inspection procedure.
The blade inspection focuses on the airfoil profile and the error analysis in the key dimensions. However, the traditional measurement methods may not sufficient to handle the inspection of the sequence of airfoil profile due to the blade design shown in most of the blade blueprint. This study proposed the off-line inspection procedure regarding to the airfoil profile measurement while the original CAD model was provided. A two-stage inspection procedure is also proposed in order to examine the blade with the blueprint only. Regarding to the significant change of the curvature rate in the leading or trailing edges of the airfoil, a searching and measurement method is also proposed to reduce the non-smooth measurements.
It is very difficult to calculate the airfoil parameters and analyze the profile error by the specification in blueprint and the profile measurement data since the uncertainty in the datum planes and datum points. Therefore, based on the objective of automatic inspection and then calculate the airfoil parameters and the profile error analysis. The proposed optimum datum determination method can be achieved by iteration in searching the shortest measurement distance and calculate the transform matrix for coordinate system correction.
Regarding to blades inspection, this study proposed a complete automatic procedure includes (1) Blade datum determination methods for several kinds of blades, (2) Rebuild the manufacturing coordinate system methods, (3) Airfoil profile measurement methods, (4) Airfoil analysis methods, and (5) Automatic inspection methods. The proposed procedure and the corresponding inspection techniques were proved the capabilities in several aero engine blades and successfully applied by several domestic aero industry companies for the blade inspection and analysis.
關鍵字(中) ★ 三次元量測儀
★ 座標定位
★ 葉片檢測
★ 翼形參數分析
關鍵字(英) ★ Airfoil profile analysis
★ Blade inspection
★ Coordinate setup
★ CMM
論文目次 摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究目的與方法 7
1.3.1 座標定位 8
1.3.2 量測分析技術 8
1.4 論文架構 12
第二章 葉片概論 15
2.1 發動機葉片 15
2.1.1 葉片種類 17
2.1.2 葉片構造 17
2.2 翼形參數定義 22
2.3 葉片座標定義 25
2.4 葉片公差類型 27
第三章 基準點量測及座標定位原理 30
3.1 前言 30
3.2 葉片基準點分類 30
3.3 三次元量測探討 33
3.3.1 探頭補償探討 34
3.3.2 微平面量測法 37
3.4 座標系統設定 40
3.5 葉片基準點量測法 42
3.6 葉片座標系統設定 47
3.6.1 三基準平面定座標 47
3.6.2 六基準點定座標 49
3.6.3 六基準點疊代定座標 51
3.6.4 基準點誤差探討 52
3.6.5 座標系統修正 55
第四章 翼形面量測及路徑規劃 57
4.1 前言 57
4.2 B-spline曲線 57
4.3 離線量測規劃 60
4.4 兩階段量測規劃 63
4.5 搜尋法量測規劃 68
4.6 軟體補償規劃 69
第五章 葉片翼剖面分析技術研究 72
5.1 前言 72
5.2 分析資料處理 72
5.3 資料對齊演算法 73
5.4 翼形參數分析程序 76
5.4.1 量測資料的初始定位 78
5.4.2 量測資料的最佳化定位 78
5.4.3 葉片參數分析 83
5.5 葉片參數分析演算法 83
5.5.1 前後緣尖端搜尋 84
5.5.2 弦拱曲線搜尋及厚度計算 84
5.5.3 其他參數分析 86
第六章 座標定位與檢測技術在發動機葉片上的應用 89
6.1 前言 89
6.2 噴嘴區段的座標定位 89
6.2.1 座標系統設定 90
6.2.2 座標設定結果 92
6.3 渦輪葉片的座標定位 93
6.3.1 座標系統設定 93
6.3.2 座標設定結果 99
6.3.3 葉片基本檢測 102
6.4 風扇葉片的翼形檢測 106
6.4.1 座標系統設定 106
6.4.2 葉片翼形面量測 109
6.4.3 最佳化量測資料 109
6.4.4 葉片翼形面分析 109
6.4.5 翼形面分析結果 111
第七章 結論與未來展望 115
7.1 結論 115
7.2 未來展望 116
參考文獻 118
參考文獻 1. P. C. Miguel, T. King, and J. Davis, "CMM Verification:A Survey", Measurement, Vol. 17, No. 1, pp. 1-16, 1996.
2. P. S. Huang and J. Ni, "On-line Error Compensation of Coordinate Measuring Machine", International Journal of Machine Tools and Manufacture, Vol. 35, No. 5, pp. 725-738, 1995.
3. F. Franceschini, M. Galetto, and L. Settineri, "On-line Diagnostic Tools for CMM Performance", The International Journal of Advanced Manufacturing Technology, Vol. 19, pp. 125-130, 2002.
4. S. Kim and S. Chang, "The Development of the Off-line Measurement Planning System for Inspection Automation", Computers and Industrial Engineering, Vol. 30, No. 3, pp. 531-542, 1996.
5. C. H. Menq, H. T. Yau, and G. T. Lai, "Automated Precision Measurement of Surface Profile in CAD-Directed Inspection", IEEE Transactions on Robotics and Automation, Vol. 8, pp. 268-278, 1992.
6. H. T. Yau and C. H. Menq, "Automated CMM Path Planning For Dimensional Inspection of Dies and Molds Having Complex Surfaces", International Journal of Machine Tools and Manufacture, Vol. 35, No. 6, pp. 861-876, 1995.
7. A. C. Lin, S. Y. Lin, and T. H. Fang, "Automated Sequence Arrangement of 3D Point Data for Surface Fitting in Reverse Engineering", Computers in Industry, Vol. 35, pp. 149-173, 1998.
8. G. Moroni, W. Polini, and Q. Semeraro, "Knowledge Based Method for Touch Probe Configuration in an Automated Inspection System", Journal of Materials Processing Technology, Vol. 76, pp. 153-160, 1998.
9. C. Bradley, "Automated Surface Roughness Measurement", The International Journal of Advanced Manufacturing Technology, Vol. 16, pp. 668-674, 2000.
10. K. H. Lee and H. P. Park, "Automated Inspection Planning of Free-form Shape Parts by Laser Scanning", Robotics and Computer Integrated Manufacturing, Vol. 16, pp. 201-210, 2000.
11. F. Prieto, T. Redarce, R. Lepage, and P. Boulanger, "An Automated Inspection System", The International Journal of Advanced Manufacturing Technology, Vol. 19, pp. 917-925, 2002.
12. K. Lau , N. Duffie , and J. Bollinger, "Automatic Generation of Part Programs for Three-Dimensional Geometry", Journal of Manufacturing Science and Engineering, Vol. pp. 535-541, 1985.
13. H. J. Pahk and W. J. Ahn, "Precision Alignment Technique for Parts Having Thin Features Using Measurement Feedback Iterative Method In CAD/CAI Environment", International Journal of Machine Tools and Manufacture, Vol. 36, No. 2, pp. 217-227, 1996.
14. H. Pahk, J. Kim, and K. Lee, "Integrated Real Time Compensation System for Errors Introduced by Measurement Probe and Machine Geometry in Commercial CMMS", International Journal of Machine Tools and Manufacture, Vol. 36, No. 9, pp. 1045-1058, 1996.
15. Q. Yang, C. Butler, and P. Baird, "Error Compensation of Touch Trigger Probes", Measurement, Vol. 18, No. 1, pp. 47-57, 1996.
16. W. T. Estler, S. D. Phillips, B. Borchardt, T. Hopp, C. Witzgall, M. LeveNson, K. Eberhardt, M. McClain, Y. Shen, and X. Zhang, "Error Compensation For CMM Touch Trigger Probes", Precision Engineering, Vol. 19, pp. 85-97, 1996.
17. W. G. Weekers and P. H. J. Schellekens, "Compensation for Dynamic Errors of Coordinate Measuring Machines", Measurement, Vol. 20, No. 3, 1997.
18. J. X. Yuan and J. Ni, "The Real-time Error Compensation Technique for CNC Maching Systems", Mechatronics, Vol. 8, pp. 359-380, 1998.
19. N. A. Barakat, M. A. Elbestawi, and A. D. Spence, "Kinematic and Geometric Error Compensation of a Coordinate Measuring Machine", International Journal of Machine Tools and Manufacture, Vol. 40, pp. 833-850, 2000.
20. S. R. Liang and A. C. Lin, "Probe-radius Compensation for 3D Data Points in Reverse Engineering", Computers in Industry, Vol. 48, pp. 241-251, 2002.
21. Z. Meng, R. S. Che, Q. C. Huang, and Z. J. Yu, "The Direct-error-compensation Method of Measuring the Error of a Six-freedom-degree Parallel Mechanism CMM", Journal of Materials Processing Technology, Vol. 129, No. 1-3, pp. 574-578, 2002.
22. 張國雄, "三次元量測機的誤差補償", 機械月刊, 第二十卷第二期,pp. 132-137, 1994.
23. W. W. Bathie, Fundamentals of Gas Turbines, Wiley, 1984.
24. Rolls-Royce, The Jet Engine, Great Britain, 1986.
25. H. Cohen, Gas Turbine Theory, Wiley, 1987.
26. R. Eppler, Airfoil Design and Data, Springer-Verlago, 1990.
27. I. E. Treager, Aircraft Gas Turbine Engine Technology, McGraw-Hill, 1994.
28. T. Giampaolo, The Gas Turbine Handbook: Principles and Practices, Prentice Hall, 1997.
29. J. H. Oliver, N. K. Nair and D. E. Shanahan, "Geometric Design of Turbomachinery Blades on General Stream Surfaces", ASME Concurrent Product Design, DE-Vol. 74, pp. 137-144, 1994.
30. J. Hoschek and R. Muller, "Turbine Blade Design by Lofted B-spline Surfaces", Journal of Computational and Applied Mathematics, Vol. 119, pp. 235-248, 2000.
31. 王亮,艾玲, "也談三坐標測量機測量葉型的方法", 計量技術, No. 1, 1998, pp. 35-37.
32. 陳菘景, "三次元量測軟體發展", 中央大學機械工程研究所碩士論文, 2000.
33. K. T. Gunnarsson, and F. B. Prinz, "CAD Model-Based Localization of Parts in Manufacturing", Computer, pp.66-74, 1987.
34. K. C. Sahoo, and C. H. Menq, "Localization of 3-D Objects Having Complex Sculptured Surfaces Using Tactile Sensing and Surface Description", Journal of Engineering for Industry, Vol. 113, pp.85-92 , 1991.
35. X. Huang , P. Gu, and R. Zernicke, "Localization and Comparison of Two Free-From Surfaces", Computer-Aided Design, Vol. 28, No. 12, pp.1017-1022, 1996.
36. Z. Li, J. Gou, and Y. Chu, "Geometric Algorithms for Workpiece Localization", IEEE Transactions on Robotics and Automation, Vol. 14, pp.864-878, 1998.
37. P. J. Besl, and N. D. McKay, "A Method for Registration of 3-D Shapes", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, pp. 239-256, 1992.
38. T. Masuda, and N. Yokoya, "A Robust Method for Registration and Segmentation of Multiple Range Images", Computer Vision and Image Understanding, Vol. 61, pp.295-307, 1995.
39. A. W. Fitzgibbon, "Robust Registration of 2D and 3D Point Sets", Image and Vision Computing, Vol. 21, pp. 1145-1153, 2003.
40. M. Ristic and D. Brujic, "Efficient Registration of NURBS Geometry", Image and Vision Computing, Vol. 15, pp. 925-935, 1997.
41. W. H. Wang and Y. C. Chen, "Image Registration by Control Points Pairing Using the Invariant Properties of Line Segments", Pattern Recognition Letters , Vol. 18, pp. 269-281, 1997.
42. A. E. Johnson and S. B. Kang, "Registration and Integration of Textured 3D Data", Image and Vision Computing, Vol. 17, pp. 135-147, 1999.
43. J. Y. Lai, W. D. Ueng, and C. Y. Yao, "Registration and Data Merging for Multiple Sets of Scan Data", The International Journal of Advanced Manufacturing Technology, Vol. 15, pp. 54-63, 1999.
44. H. T. Yau, C. Y. Chen, and R. G. Wilhelm, "Registration and Integration of Multiple Laser Scanned Data for Reverse Engineering of Complex 3D Models", Precision Engineering, Vol. 38, No. 2, pp. 269-285, 2000.
45. O. Faugeras and M. Hebert, “The Representation, Recognition and Locating of 3-D Objects”, International Journal of Roberts, Vol. 5, No. 3, pp. 27-56, 1986.
46. K. S. Arun, T. S. Huang and S. D. Blostein, “Least-Squares Fitting of Two 3-D Point Sets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 5, pp. 698-700, 1987.
47. 翁文德, "航太葉片三次元檢測技術發展", 國立中央大學機械工程研究所博士論文 (2000).
48. 杜佳政, "航太葉片三次元檢測技術發展", 國立中央大學機械工程研究所碩士論文 (2001).
49. 黃祥榮, "航太葉片檢測技術之研究", 國立中央大學機械工程研究所碩士論文 (2002).
50. H. T. Yau, "Evaluation and Uncertainty Analysis of Vectorial Tolerances", Precision Engineering, Vol. 20, pp. 123-137, 1997.
51. H. T. Yau, "Uncertainty Analysis in Geometric Best Fit", International Journal of Machine Tools and Manufacture, Vol. 38, pp. 1323-1342, 1998.
52. Z. C. Yan, B. D. Yang, and C. H. Menq, "Uncertainty Analysis and Variation Reduction of Three Dimensional Coordinate Metrology. Part 1: Geometric Error Decomposition", International Journal of Machine Tools and Manufacture, Vol. 39, pp. 1199-1217, 1999.
53. Z. C. Yan and C. H. Menq, "Uncertainty Analysis and Variation Reduction of Three Dimensional Coordinate Metrology. Part 2: Uncertainty Analysis", International Journal of Machine Tools and Manufacture, Vol. 39, pp. 1219-1238, 1999.
54. Z. C. Yan and C. H. Menq, "Uncertainty Analysis and Variation Reduction of Three Dimensional Coordinate Metrology. Part 3: Variation Reduction", International Journal of Machine Tools and Manufacture, Vol. 39, pp. 1239-1261, 1999.
55. I. Zeid, CAD/CAM Theory and Practice, McGraw-Hill, Inc, 1991.
56. P. J. Hartley and C. J. Judd, "Parametrization and Shape of B-spline Curves for CAD", Computer-Aided Design, Vol. 12, No. 5, pp. 235-238, 1980.
57. J. B. Gou, Y. X. Chu and Z. X. Li, "A Geometric Theory of Form, Profile, and Orientation Tolerances", Precision Engineering, Vol. 23, Issue 2, 1999, pp.79-93.
58. S. Hossein Cheragi, Huay S. Lim, and Saied Motavalli, "Straightness and Flatness Tolerance Evaluation: an Optimization Approach", Precision Engineering, Vol. 18, Issue 1, 1996, pp. 30-37.
59. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recpies in C: The Art of Scientific Computing, Cambridge, New York, 1992.
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2007-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明