參考文獻 |
1. W. F. Smith, Structure and Properties of Engineering Alloys, 2nd Ed., McGraw-Hill, Inc., New York, USA, 1993.
2. U. K. Viswanathan, S. Banerjee, and R. Krishnan, “Effect of Aging on the Microstructure of 17-4 PH Stainless Steel,” Materials Science and Engineering, Vol. A104, 1988, pp. 181-189.
3. H. J. Rack and D. Kalish, “The Strength, Fracture Toughness, and Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel,” Metallurgical Transactions, Vol. 5, 1974, pp. 1595-1605.
4. C.-K. Lin and W.-J. Tsai, “Corrosion Fatigue Behaviour of a 15Cr-6Ni Precipitation-Hardening Stainless Steel in Different Tempers,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 23, 2000, pp. 489-497.
5. F. B. Pickering, “Physical Metallurgy of Stainless Steel Developments,” International Metals Reviews, Vol. 21, 1976, pp. 227-268.
6. R. D. K. Misra, G. Y. Prasad, T. V. Balasubramanian, and P. R. Rao, “Effect of Phosphorus Segregation on Impact Toughness Variation in 17-4 PH Precipitation Hardened Stainless Steel,” Scripta Metallurgica, Vol. 20, 1986, pp. 713-716.
7. R. D. K. Misra, G. Y. Prasad, T. V. Balasubramanian, and P. R. Rao, “On Variation of Impact Toughness in 17-4 PH Precipitation Hardened Stainless Steel,” Scripta Metallurgica, Vol. 21, 1987, pp. 1067-1070.
8. “Carpenter Precipitation Hardening Stainless Steels,” Manufacturer’s Product Bulletin, Carpenter Technology Co., PA, 1986.
9. K. C. Antony, “Aging Reactions in Precipitation Hardenable Stainless Steel,” Journal of Metals, 1963, pp. 922-927.
10. U. K. Viswanathan, P. K. K. Nayar, and R. Krishnan, “Kinetics of Precipitation in 17-4 PH Stainless Steel,” Materials Science and Technology, Vol. 5, 1989, pp. 346-349.
11. X. Zang, ”Microstructural Study of 17-4 PH Steel after Aging Treatment,” Transactions of Metal Heat Treatment, Vol. 12, 1991, pp. 23-29. (in Chinese)
12. G. Huang, “Study on the Structure and Performance of 17-4 PH Stainless Steel,” Iron and Steel, Vol. 33, 1998, pp. 44-46. (in Chinese)
13. M. U. Islam, G. Campbell, and R. Hsu, “Fatigue and Tensile Properties of EB Welded 17-4 PH Steel,” Welding Journal, Vol. 68, 1989, pp. 45-50.
14. S. Isogawa, H. Yoshida, Y. Hosoi, and Y. Tozawa, “Improvement of the Forgeability of 17-4 PH Precipitation Hardening Stainless Steel by Ausforming,” Journal of Materials Processing Technology, Vol. 74, 1998, pp. 298-306.
15. Y. Tan, J. Wang, and S. Wang, “Phase Transformation of 17-4 PH Steel in Aging Processes,” Transactions of Metal Heat Treatment, Vol. 14, 1993, pp. 1-7.
16. C. N. Hsiao, C. S. Chiou, and J. R. Yang, “Aging reactions in a 17-4 PH Stainless Steel,” Materials Chemistry and Physics, Vol. 74, 2002, pp. 134-142.
17. M. Murayama, Y. Katayama, and K. Hono, “Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at 400oC,” Metallurgical and Materials Transactions A, Vol. 30, 1999, pp. 345-353.
18. Metals Handbook, 10th Ed., Vol. 1, ASM International, Materials Park, OH, 1990, pp. 930-949.
19. K. C. Russel and L. M. Brown, “A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Iron-Copper System,” Acta Metallurgica, Vol. 20, 1972, pp. 969-974.
20. E. Hornbogen, “The Role of Strain Energy During Precipitation of Copper and Gold from Alpha Iron,” Acta Metallurgica, Vol. 10, 1962, pp. 525-533.
21. A. Youle and B. Ralph, “A study of the Precipitation of Copper from a-Iron in the Pre-Peak to Peak Hardness Range of Aging,” Metal Science Journal, Vol. 6, 1972, pp. 149-152.
22. M. R. Krishnadev and I. Le May, “Microstructure and Mechanical Properties of a Commercial Low-Carbon Copper-Bearing Steel,” Journal of the Iron and Steel Institute, Vol. 208, 1970, pp. 458-462.
23. P. J. Orthen, M.L. Jenkins, G. D. W. Smith, and W. J. Phythian, “Transmission Electron Microscope Investigations of the Structure of Copper Precipitates in Thermally-Aged Fe-Cu and Fe-Cu-Ni,” Philosophical Magazine Letters, Vol. 64, 1991, pp. 383-391.
24. S. R. Goodman, S. S. Brenner, and J. R. Low, Jr., “An FIM-Atom Probe Study of the Precipitation of Copper from Iron-1.4 At. Pct Copper, Part I: Field-Ion Microscopy,” Metallurgical Transactions, Vol. 4, 1973, pp. 2363-2369.
25. S. R. Goodman, S. S. Brenner, and J. R. Low, Jr., “An FIM-Atom Probe Study of the Precipitation of Copper from Iron-1.4 At. Pct Copper, Part II: Atom Probe Analyses,” Metallurgical Transactions, Vol. 4, 1973, pp. 2371-2378.
26. E. Hornbogen and R. C. Glenn, “A Metallographic Study of Precipitation of Copper from Alpha Iron,” Transactions of the Metallurgical Society of AIME, Vol. 218, 1960, pp. 1064-1070.
27. G. R. Speich and R. A. Oriani, “The Rate of Coarsening of Copper Precipitate in an Alpha-Iron Matrix,” Transactions of the Metallurgical Society of AIME, Vol. 233, 1965, pp. 623-631.
28. N. Maruyama, M. Sugiyama, T. Hara, and H. Tamehiro, “Precipitation and Phase Transformation of Copper Particles in Low Alloy Ferritic and Martensitic Steels,” Materials Transactions, JIM, Vol. 40, 1999, pp. 268-277.
29. H. R. Habibi-Bajguirani and M. L. Jenkins, “High-Resolution Electron Microscopy Analysis of the Structure of Copper in a Martensitic Stainless Steel of Type PH 15-5,” Philosophical Magazine Letters, Vol. 73, 1996, pp. 155-162.
30. J. W. Edington, Practical Electron Microscopy in Materials Science, Van Nostrand Reinhold Company, New York, USA, 1976.
31. C. S. Barrett and T. B. Massalski, Structure of Metals, 3rd Ed., McGraw-Hill, Inc., New York, USA, 1966.
32. E. A. Branddes, Smithells Metals Reference Book, 6th Ed., Butterworths, London, 1983.
33. D. T. Peters and C. R. Cupp, “ The Kinetics of Aging Reactions in 18 Pct Ni Maraging Steels,” Transactions of the Metallurgical Society of AIME, Vol. 236, 1966, pp. 1420-1429.
34. E. R. Miner, J. K. Jackson, and D. F. Gibbons, “Internal Friction in 18 Pct Ni Maraging Steels,” Transactions of the Metallurgical Society of AIME, Vol. 236, 1966, pp. 1565-1570.
35. S. Floreen, “The Physical Metallurgy of Maraging Steels,” Metallurgical Reviews, Vol. 13, 1968, pp. 115-128.
36. “Armco 17-4 PH Precipitation-Hardening Stainless Steel Bar and Wire”, Manufacture’s Product Data, Armco Steel Corporation, USA, 1975.
37. W. C. Leslie, The Physical Metallurgy of Steels, McGraw-Hill, Inc., New York, NY, 1981.
38. M. Courtnall and F. B. Pickering, “The Effect of Alloying on 485oC Embrittlement,” Metal Science, Vol. 10, 1976, pp. 273-276.
39. L. L. Horton and M. K. Miller, “The Influence of Retained Austenite on a-a’ Phase Decomposition in Fe-Cr Alloys,” Scripta Metallurgica et Materialia, Vol. 30, 1994,pp. 1305-1310.
40. M. K. Miller, I. M. Anderson, J. Bentley, and K. F. Russell, “Phase Separation in the Fe-Cr-Ni System,” Applied Surface Science, Vol. 94/95, 1996, pp. 391-397.
41. B. Yrieix and M. Guttmann, “Aging Between 300 and 450oC of Wrought Martensitic 13-17 Wt-Percent-Cr Stainless-Steels,” Materials Science and Technology, Vol. 9, 1993, pp. 125-134.
42. M. K. Miller and M. G. Burke, “An Atom Probe Field-Ion Microscopy Study of Neutron-Irradiated Pressure-Vessel Steels,” Journal of Nuclear Materials, Vol. 195, 1992, pp. 68-82.
43. B. C. Syrett, R. Viswanathan, S. S. Wing, and J. E. Wittig, “Effect of Microstructure on Pitting and Corrosion Fatigue of 17-4 PH Turbine Blade Steel in Chloride Environments,” Corrosion, Vol. 38, 1982, pp. 273-282.
44. K. S. Raja and K. P. Rao, “Stress Corrosion Cracking Behavior of 17-4 PH Stainless Steel Weldments at Open-Circuit Potentials,” Journal of Materials Science Letters, Vol. 12, 1993, pp. 957-960.
45. T. M. Rust and V. P. Swaminathan, “Corrosion Fatigue Testing of Steam Turbine Blading Alloys,” pp. 3.107-3.130 in Corrosion Fatigue of Steam Turbine Blade Materials, Edited by R. I. Jaffee, Pergamon Press, New York, 1984.
46. C.-K. Lin and C.-P. Lin, “Corrosion Fatigue Behavior of 17-4 PH Stainless Steel in Different Tempers,” pp. 598-613 in Fatigue and Fracture Mechanics, Vol. 33, ASTM STP 1417, Edited by W. G. Reuter and R. S. Piascik, American Society for Testing and Materials, West Conshohocken, PA, 2003.
47. “Standard Test Method for Tension Testing of Metallic Materials,” ASTM E8M-98, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, Philadelphia, USA, 1998, pp. 78-98.
48. “Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM E466-96, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, Philadelphia, USA, 1998, pp. 471-475.
49. “Standard Practice for Strain-Controlled Fatigue Testing,” ASTM E606-92, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, Philadelphia, USA, 1998, pp. 528-542.
50. “Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation,” ASTM E975-95, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, Philadelphia, USA, 1998, pp. 675-680.
51. B. D. Cullity, Elements of X-Ray Diffraction, 2nd Ed., Addison-Wesley Publishing Company, Inc., California, USA, 1978.
52. R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd Ed., International Thomson Publishing, New York, 1992.
53. X. Xia, Y. Li, and D. Wu, “Effect of Overaging on Microstructure and Properties of a Steel 17-4 PH,” Material Science and Technology, Vol. 5, 1997, pp. 106-110. (in Chinese)
54. F. W. Jones and W. I. Pumphrey, “Free Energy and Metastable States in the Iron-Nickel and Iron-Manganese Systems,” Journal of the Iron and Steel Institute, Vol. 163, 1949, pp. 121-131.
55. T. Isomoto and N. S. Stoloff, “Effect of Microstructure and Temperature on High Cycle Fatigue of Power Metallurgy Astroloy,” Materials Science and Engineering, Vol. A124, 1990, pp. 171-181.
56. J. Botella, C. Merino, and E. Otero, “A Comparison of the High-Temperature Oxidation of 17Cr-2Ni and 18Cr-8Ni Austenitic Stainless Steels at 973 K,” Oxidation of Metals, Vol. 49, 1998, pp. 297-324.
57. G. R. Leverant and M. Gell, “The Influence of Temperature and Cyclic Frequency on the Fatigue Fracture of Cube Oriented Nickel-Base Superalloy Single Crystals,” Metallurgical Transactions A, Vol. 6A, 1975, pp. 367-371.
58. D. J. Duquette and M. Gell, “The Effect of Environment on the Mechanism of Stage I Fatigue Fracture,” Metallurgical Transactions, Vol. 3, 1972, pp. 1899-1905.
59. J. A. Bannantine, J. J. Comer, and J. L. Handrock, Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Inc., New Jersey, USA, 1990.
60. R. H. Priest and E. G. Ellison, “An Assessment of Life Analysis Techniques for Fatigue Creep Situations,” Res Mechanica, Vol. 4, 1982, pp. 127-150.
61. D. W. Maclachlan and D. M. Knowles, “Fatigue Behaviour and Lifing of Two Single Crystal Superalloys,” Fatigue and Fracture of Engineering Materials Structures, Vol. 24, 2001, pp. 503-521.
62. J. A. Collins, Failure and Materials in Mechanical Design, 2nd Ed., John Wiley & Sons, Inc., New York, USA, 1993.
63. K. Nagai, O. Umezawa, T. Yuri, and K. Ishikawa, “Internal Crack Initiation in High Cycle Fatigue at Cryogenic Temperatures,” Engineering Fracture Mechanics, Vol. 40, 1991, pp. 957-965.
64. K. B. S. Rao, H. Schiffers, and H. Schuster, “Influence of Time and Temperature Dependence Processes on Strain Controlled Low Cycle Fatigue Behaviour of Alloy 617,” Metallurgical Transactions A, Vol. 19A, 1988, pp. 359-371.
65. S. L. Mannan, “Role of Dynamic Strain Aging in Low Cycle Fatigue,” Bulletin of Materials Science, Vol. 16, 1993, pp. 561-582.
66. V. S. Srinivasan, R. Sandhya, K. B. S. Rao, S. L. Mannan, and K. S. Raghavan, “Effects of Temperature on the Low Cycle Fatigue Behaviour of Nitrogen Alloyed Type 316L Stainless Steel,” International Journal of Fatigue, Vol. 13, 1991, pp. 471-478.
67. S. Herenu, I Alvarez-Armas, and A. F. Armas, “The Influence of Dynamic Strain Aging on the Low Cycle Fatigue of Duplex Stainless Steel,” Scripta Materialia, Vol. 45, 2001, pp. 739-745.
68. M. J. Roberts and W. S. Owen, “Unstable Flow in Martensite and Ferrite,” Metallurgical Transactions, Vol. 1, 1970, pp. 3203-3213.
69. A. Nagesha, M. Valsan, R. Kannan, K. B. S. Rao, and S. L. Mannan, “Influence of Temperature on the Low Cycle Fatigue Behaviour of a Modified 9Cr-1Mo Ferritic Steel,” International Journal of Fatigue, Vol. 24, 2002, pp. 1285-1293.
70. R. Sandhya, K. B. S. Rao, S. L. Mannan, and R. Devanathan, “Substructural Recovery in a Cold Worked Ti-Modified Austenitic Stainless Steel During High Temperature Low Cycle Fatigue,” International Journal of Fatigue, Vol. 23, 2001, pp. 789-797.
71. V. S. Srinivasan, M. Valsan, R. Sandhya, K. B. S. Rao, S. L. Mannan, and D. H. Sastry, “High Temperature Time-Dependent Low Cycle Fatigue Behaviour of a Type 316L(N) Stainless Steel,” International Journal of Fatigue, Vol. 21, 1999, pp. 11-21.
72. K. B. S. Rao, M. Valsan, R. Sandhya, S. L. Mannan, and P. Rodriguez, “An Assessment of Cold Work Effects on Strain-Controlled Low Cycle Fatigue Behaviour of Type 304 Stainless Steel,” Metallurgical Transactions, Vol. 24A, 1993, pp. 913-924.
73. A. Plumtree and L. Pawlus, “Substructural Developments during Strain Cycling of Wavy Slip Materials,” pp. 81-97 in Low Cycle Fatigue, ASTM STP 942, Edited by H. D. Solomon, G. R. Halford, L. P. Kaisand, and B. N. Leis, American Society for Testing and Materials, Philadelphia, PA, 1988.
74. R. Sandhya, K. B. S. Rao, and S. L. Mannan, “The Effect of Temperature on the Low Cycle Fatigue Properties of a 15Cr-15Ni, Ti Modified Austenitic Stainless Steel,” Scripta Materialia, Vol. 41, 1999, pp. 921-927. |