博碩士論文 87323006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.17.166.43
姓名 王鎮和(Zhen-He Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究
★ AISI 347不銹鋼腐蝕疲勞行為★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響
★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為★ 電子構裝用無鉛銲錫之低週疲勞行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的目的在探討鑄態及沃斯回火球墨鑄鐵在不同環境下之疲勞裂縫成長行為,比較在不同腐蝕性環境及潤滑油環境下因沃斯回火熱處理條件及負荷頻率之不同所造成疲勞裂縫成長行為的差異性。
實驗結果顯示,不論是高溫或低溫沃斯回火恆溫處理皆無明顯提升球墨鑄鐵在腐蝕環境下的耐腐蝕能力。在腐蝕疲勞裂縫成長方面,鑄態與二款沃斯回火球墨鑄鐵在負荷頻率20 Hz下,於不同室溫腐蝕環境下的疲勞裂縫成長速率因受到腐蝕產物誘起裂縫閉合效應的影響,比其在空氣中慢。扣除裂縫閉合效應後,在此高負荷頻率下,腐蝕環境因素對其疲勞裂縫成長驅動力的影響並不大,造成三款材料其有效裂縫成長速率皆與空氣中相近。換言之,在高負荷頻率條件下,鑄態與沃斯回火球墨鑄鐵的疲勞裂縫成長行為對環境的敏感性較小,造成鑄態與沃斯回火球墨鑄鐵在空氣與不同室溫腐蝕環境下的疲勞裂縫成長趨勢一致。
至於鑄態與沃斯回火球墨鑄鐵在SAE 10W40潤滑油環境下的疲勞裂縫成長行為,因該油體提供較惰性的環境降低腐蝕效應,使其裂縫成長速率比空氣中慢。此外,隨著環境溫度升高,增加裂縫成長驅動力,並加速溶液中離子的擴散速率,使得裂縫尖端氫脆效應加大,導致沃斯回火球墨鑄鐵在80℃鹽水下的裂縫成長速率比室溫鹽水下來得高。
關於頻率效應方面,因降低負荷頻率使得裂縫尖端的氫離子有較長的時間擴散進入金屬內,破壞金屬鍵結,導致裂縫尖端的氫脆效應較明顯,加速疲勞裂縫成長速率,使得沃斯回火球墨鑄鐵在腐蝕環境中於負荷頻率1 Hz下的疲勞裂縫成長速率明顯比負荷頻率20 Hz快。
摘要(英) Experimental results show that austempering heat treatment did not improve the corrosion resistance of ductile iron in the given corrosive environments. In various room-temperature aqueous environments, all the as-cast and austempered ductile irons exhibited lower FCG rates at 20 Hz than those in air due to the crack closure effect induced by corrosion products. By subtracting the crack closure effect, the given room-temperature corrosive environments did not exert any detrimental effects on the FCG behavior at 20 Hz for the given ductile irons as the effective FCG curves of each iron in these corrosive environments were close to that in air. In other words, the FCG behavior of the given ductile irons at 20 Hz was not sensitive to the environmental effects at room temperature.
The SAE 10W40 lubrication oil provided an inert environment to reduce the FCG rates for the given ductile irons as compared to atmospheric environment. An increase in the temperature of salt water from room temperature to 80℃ caused a remarkable increase in FCG rate for ADI due to the enhanced diffusion rate and hydrogen embrittlement (HE) effect at the crack tip.
As the cyclic loading frequency was reduced, more time was available in each cycle for the corrosive environments to interact with the crack tip and enhance the HE effect. As a result, the FCG rates at a lower frequency (1 Hz) were greater than those at a higher frequency (20 Hz) in corrosive environments.
關鍵字(中) ★ 沃斯回火球墨鑄鐵
★ 腐蝕疲勞裂縫成長
★ 裂縫閉合效應
★ 腐蝕環境
關鍵字(英) ★ austempered ductile iron
★ corrosion fatigue crack growth
★ crack closure effect
★ corrosive environments
論文目次 List of TablesV
List of FiguresVI
第一章 簡介1
1-1 球墨鑄鐵與沃斯回火球墨鑄鐵之研究及發展1
1-2 沃斯回火熱處理2
1-3 腐蝕疲勞機構4
1-4 裂縫閉合效應7
1-5 鑄鐵腐蝕性質文獻回顧9
1-6 工程材料在不同環境下之疲勞裂縫成長行為11
1-7 研究目的14
第二章 實驗程序15
2-1 材料製作15
2-2 試片製作與取樣15
2-3 沃斯回火熱處理15
2-4 實驗環境16
2-5 疲勞裂縫成長試驗16
2-6 電化學試驗18
2-7 金相、破斷面之SEM觀察18
第三章 結果與討論20
3-1 熱處理對機械性質、微結構及耐腐蝕力的影響20
3-2 不同室溫環境下之疲勞裂縫成長行為21
3-3 頻率效應對腐蝕疲勞裂縫成長行為的影響23
3-4 環境溫度對腐蝕疲勞裂縫成長行為之影響25
3-5 沃斯回火熱處理對不同環境下疲勞裂縫成長行為的影響26
第四章 結論30
參考文獻32
Tables37
Figures40
參考文獻 [1] 潘國桐、廖高宇譯, 球墨鑄鐵手冊, 中華民國鑄造學會編印, 1994.
[2] D. Venugopalan, K. L. Pilon, and A. Alagarsamy, “Influence of Microstructure on Fatigue Life of As-Cast Ductile Iron,“ AFS Transactions, Vol. 96, 1988, pp. 697-704.
[2] D. Venugopalan, K. L. Pilon, and A. Alagarsamy, “Influence of Microstructure on Fatigue Life of As-Cast Ductile Iron,“ AFS Transactions, Vol. 96, 1988, pp. 697-704.
[4] P. A. Blackmore and K. Morton, “Structure-Property Relationships in Graphitic Cast Iron,” International Journal of Fatigue, Vol. 4, 1982, pp. 149-155.
[5] K. Ikawa and G. Ohira, “Fatigue Property of Cast Iron in Relation to Graphite Structure,” Cast Metals Research Journal, Vol. 3, 1967, pp. 11-21.
[6] J. F. Janowak and R. B. Gundalach, “Approaching Austempered Ductile Iron Properties by Controlled Cooling in the Foundry,” Journal of Heat Treating, Vol. 4, 1985, pp. 25-31.
[7] J. E. Bevan and W. G. Scholz, “Effect of Molybdenum on Transformation Characteristics and Properties of High-Strength Ductile Iron,” AFS Transactions, Vol. 85, 1977, pp. 271-276.
[8] Y. Tanaka and H. Kage, “Development and Application of Austempered Spheroidal Graphite Cast Iron,” Materials Transactions, JIM, Vol. 33, 1992, pp. 543-557.
[9] 洪敏雄、周兆民, “球墨鑄鐵之變韌鐵化處理,” 機械月刊, 第13卷, 第6期, 民國76年, pp. 95-105.
[10] 陳耀堡、施登士, “應用模內球化法鑄製球墨鑄鐵及其沃斯回火處理,” 鑄工, 第84期, 民國84年, pp. 1-10.
[11] Y. Wang, J. Liang, B. Liu, and D. Wu, “An Investigation on the Nodulizer for Heavy Section Ductile Iron,” Foundry, No. 126, 1987, pp. 1-8.
[12] 魏景元, “不同斷面沃斯回火球墨鑄鐵之高週疲勞性質,” 國立中央大學機械工程研究所碩士論文, 1996.
[13] 陳俊益, “凝固冷卻速率對球墨鑄鐵顯微組織之影響,” 機械月刊, 第106期, 民國87年, pp. 20-22.
[14] B. V. Kovacs, “On the Terminology and Structure of ADI,” AFS Transactions, Vol. 102, 1994, pp. 417-420.
[15] 洪敏雄, “沃斯回火球墨鑄鐵之簡介,” 沃斯回火球墨鑄鐵專輯, 中華民國鑄造學會77年全國學會大會, 1988.
[15] 洪敏雄, “沃斯回火球墨鑄鐵之簡介,” 沃斯回火球墨鑄鐵專輯, 中華民國鑄造學會77年全國學會大會, 1988.
[17] K. P. Jen, J. Wu, and S. Kim, “Study of Fracture and Fatigue Behavior of Austempered Ductile Iron,” AFS Transactions, Vol. 100, 1992, pp. 833-846.
[17] K. P. Jen, J. Wu, and S. Kim, “Study of Fracture and Fatigue Behavior of Austempered Ductile Iron,” AFS Transactions, Vol. 100, 1992, pp. 833-846.
[19] M. R. Bayoumi, “Fatigue Behavior of a Commercial Aluminum Alloy in Sea Water at Different Temperatures,” Engineering Fracture Mechanics, Vol. 45, 1993, pp. 297-307.
[20] S. Suresh, Fatigue of Materials, Chapter 12, Cambridge University Press, New York, 1991.
[20] S. Suresh, Fatigue of Materials, Chapter 12, Cambridge University Press, New York, 1991.
[20] S. Suresh, Fatigue of Materials, Chapter 12, Cambridge University Press, New York, 1991.
[23] R. P. Wei and G. W. Simmons, “Recent Progress in Understanding Environment Assisted Fatigue Crack Growth,” International Journal of Fracture, Vol. 17, 1981, pp. 235-247.
[24] P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, Vol. 85, 1960, pp. 528-534.
[25] W. Elber, “Fatigue Crack Closure under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, 1970, pp. 37-45.
[26] S. Suresh and R. O. Ritchie, “Propagation of Short Fatigue Cracks,” International Metals Reviews, Vol. 29, 1984, pp. 445-476.
[27] D. L. Davidson, ”Fatigue Crack Tip Displacement Observation,” Journal of Materials Science, Vol. 14, 1979, pp. 231-233.
[28] P. E. Irving, J. L. Robinson, and C. J. Beevers, “Fatigue Crack Closure in Titanium and Titanium Alloy,” International Journal of Fracture, Vol. 9, 1983, pp. 105-108.
[29] O. Buck, C. L. Ho, and H. L. Marcus, “Plasticity Effects in Crack Propagation,” Engineering Fracture Mechanics, Vol. 5, 1973, pp. 23-24.
[30] 柯賢文, 腐蝕及其防制, 全華科技出版社, 台北, 1995, pp. 147-148.
[31] M. G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, Inc., New York, USA, 1986.
[31] M. G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, Inc., New York, USA, 1986.
[31] M. G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, Inc., New York, USA, 1986.
[34] S. Muthukumarasamy and S. Seshan, “Corrosion and Corrosion-Fatigue of Ductile Irons,” AFS Transaction, Vol. 16, 1992, pp. 873-879.
[35] O. E. Okorafor and C. R. Loper, “Embrittlement of Ductile Cast Irons Exposed to Water,” Indian Journal of Technology, Vol. 23, 1985, pp. 214-222.
[35] O. E. Okorafor and C. R. Loper, “Embrittlement of Ductile Cast Irons Exposed to Water,” Indian Journal of Technology, Vol. 23, 1985, pp. 214-222.
[37] 左景伊, 應力腐蝕破壞, 西安交通大學出版社, 大陸, 1985, pp. 31-32.
[38] G. Sandoz, C. T. Fujii, and B. F. Brown, “Solution Chemistry Within Stress-Corrosion Cracks in Alloy Steels,” Corrosion Science, Vol. 10, 1970, pp. 839-845.
[39] L. Tau, S. L. I. Chan, and C. S. Shin, “Hydrogen Enhanced Fatigue-Crack Propagation of Bainitic and Tempered Martensitic Steels,” Corrosion Science, Vol. 38, 1996, pp. 2049-2060.
[40] H. Chiu, L. Qiao, and X. Mao, “Environment-Assisted Cracking of Iron Aluminide in 3.5% NaCl Solution,” Scripta Materialia, Vol. 34, 1996, pp. 963-969.
[40] H. Chiu, L. Qiao, and X. Mao, “Environment-Assisted Cracking of Iron Aluminide in 3.5% NaCl Solution,” Scripta Materialia, Vol. 34, 1996, pp. 963-969.
[42] Z. F. Wang, J. Li, J. Q. Wang, and W. Ke, “The Influence of Loading Waveform on Corrosion Fatigue Crack Propagation,” Corrosion Science, Vol. 37, 1995, pp. 1551-1565.
[43] G. Cerisola, G. Busca, and P. L. DE Anina, “Corrosion Fatigue of Iron in Different Aqueous Environments,” Materials Chemistry and Physics, Vol. 9, 1983, pp. 387-403.
[43] G. Cerisola, G. Busca, and P. L. DE Anina, “Corrosion Fatigue of Iron in Different Aqueous Environments,” Materials Chemistry and Physics, Vol. 9, 1983, pp. 387-403.
[43] G. Cerisola, G. Busca, and P. L. DE Anina, “Corrosion Fatigue of Iron in Different Aqueous Environments,” Materials Chemistry and Physics, Vol. 9, 1983, pp. 387-403.
[43] G. Cerisola, G. Busca, and P. L. DE Anina, “Corrosion Fatigue of Iron in Different Aqueous Environments,” Materials Chemistry and Physics, Vol. 9, 1983, pp. 387-403.
[47] D. Broek, Elementary Engineering Fracture Mechanics, 4th revised ed., Martinus Nijhoff Publishers, Boston, U.S.A., 1986, p. 271.
[48] 田永奎, 金屬腐蝕與防護, 機械工業出版社, 大陸, 1992.
[49] R. P. Wei, “Some Aspects of Environment-Enhanced Fatigue Crack Growth,” Engineering Fracture Mechanics, Vol. 1, 1970, pp. 633-651.
[49] R. P. Wei, “Some Aspects of Environment-Enhanced Fatigue Crack Growth,” Engineering Fracture Mechanics, Vol. 1, 1970, pp. 633-651.
[49] R. P. Wei, “Some Aspects of Environment-Enhanced Fatigue Crack Growth,” Engineering Fracture Mechanics, Vol. 1, 1970, pp. 633-651.
[49] R. P. Wei, “Some Aspects of Environment-Enhanced Fatigue Crack Growth,” Engineering Fracture Mechanics, Vol. 1, 1970, pp. 633-651.
[53] J. A. Ruppen and R. Salzbrenner, “Effect of Environment on Crack Closure and Fatigue Threshold,” Fatigue of Engineering Materials and Structures, Vol. 6, 1983, pp. 307-314.
[53] J. A. Ruppen and R. Salzbrenner, “Effect of Environment on Crack Closure and Fatigue Threshold,” Fatigue of Engineering Materials and Structures, Vol. 6, 1983, pp. 307-314.
[55] Z. Xing, Y. Song, and M. Tu, “Crack Closure Induced by Corrosion Products and Its Effect in Corrosion Fatigue,” International Journal of Fatigue, Vol. 13, 1991, pp. 69-72.
[55] Z. Xing, Y. Song, and M. Tu, “Crack Closure Induced by Corrosion Products and Its Effect in Corrosion Fatigue,” International Journal of Fatigue, Vol. 13, 1991, pp. 69-72.
[55] Z. Xing, Y. Song, and M. Tu, “Crack Closure Induced by Corrosion Products and Its Effect in Corrosion Fatigue,” International Journal of Fatigue, Vol. 13, 1991, pp. 69-72.
[55] Z. Xing, Y. Song, and M. Tu, “Crack Closure Induced by Corrosion Products and Its Effect in Corrosion Fatigue,” International Journal of Fatigue, Vol. 13, 1991, pp. 69-72.
[59] 賴炳坤, “沃斯回火球墨鑄鐵之高週疲勞性質研究,” 國立中央大學機械工程研究所碩士論文, 1995.
[60] R. C. Voigt, “Microstructural Analysis of Austempered Ductile Cast Iron Using the Scanning Electron Microscope,” AFS Transactions, Vol. 91, 1983, pp. 253-262.
[61] J. F. Janowak, R. B. Gundlach, G. T. Eldis, and K. Rohrig, “Austempering Ductile Irons for High Strength and Toughness,” Modern Casting, December, 1981, pp. 34-36.
[62] 張智為, “基地組織對沃斯回火球墨鑄鐵疲勞裂縫成長的影響,” 國立中央大學機械工程研究所碩士論文, 1999.
[63] 鮮祺振, 腐蝕理論與實驗, 徐氏基金會, 台北, 1974, pp. 4-5.
[63] 鮮祺振, 腐蝕理論與實驗, 徐氏基金會, 台北, 1974, pp. 4-5.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2000-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明