博碩士論文 87343005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.138.102.178
姓名 張耿維(Geeng-Wei Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磁力研磨與電解磁力研磨之拋光特性研究
(Study on finishing characteristics of magnetic abrasive finishing and electrolytic magnetic abrasive finishing)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
磁力研磨(MAF)是以磁性磨粒為切削刀具,並利用磁場控制磨粒之研磨壓力,再藉由磁性磨粒與工件表面間之相對運動,使工件表面材料微量移除至近似鏡面程度之精密拋光法;由於磁性磨粒受磁場作用而聚集成一束撓性的磁力刷,所以磁性磨粒可順著複雜曲面之外形,順勢起伏地進行拋光,而且機台結構之振動或顫動亦不會影響工件表面之拋光品質。本研究使用磁粒和磨粒自然混合而成之非結合式磁性磨料(UMA),首先探討圓柱面磁力研磨之拋光特性,並將其應用於放電加工表面之改善;由實驗結果得知UMA之拋光效果可媲美成本昂貴之燒結磁性磨料,在短短幾分鐘內,即可將硬度為HRC55之SKD11圓桿試件由0.25mm Ra拋光至0.042mm Ra;精進型磁力研磨將磁粒之研磨壓力經由一層不織布傳遞給工件表面之磨粒,更可以將試件之表面粗糙度再持續改善至0.017mm Ra;對於圓柱面上之放電加工表面,MAF亦可輕易地拋除其再凝固層和微裂紋,並獲得0.04mm Ra之精緻表面。為了提高拋光性能,本研究提出結合MAF和電解作用之電解磁力研磨複合拋光法(EMAF),先讓工件表面生成一層硬度比母金屬低之鈍化膜,再利用MAF予以拋除,本項研究分別針對SKD11之圓柱面以及AISI 304不銹鋼圓管之內表面探討其拋光特性,並與MAF作比較,由實驗結果証實EMAF之拋光特性明顯優於MAF,不論是圓柱面或圓管內表面拋光,EMAF不但有較高之拋光效率,同時亦可獲得極佳之表面粗糙度,尤其針對SKD11之圓柱面拋光,EMAF僅需5分鐘即可將0.178mm Ra之工件表面拋光至近乎鏡面之0.017mm Ra。本文除了詳述MAF和EMAF之工作原理,並探討其拋光特性及拋光機制之外,在EMAF拋光過程中,對於電解離子因受到洛侖茲力之作用導致運動軌跡變成曲線之理論以及鈍化膜之生成形態亦詳加說明。為了探討電解作用與MAF之協同效果(synergistic effect),本研究亦進行了多次純電解拋光實驗,由實驗結果得知,在適當的加工條件下,由於電解作用與MAF相互協同作用的結果,EMAF可獲得頗高之額外材料移除量。本研究亦利用田口法和L18直交表,經由實驗獲得EMAF圓柱面拋光之最佳表面粗糙度改善率和最大材料移除量之最佳加工參數組合,然後再利用變異數分析(ANOVA)探討各實驗參數影響表面粗糙度改善率和材料移除量之顯著程度。
摘要(英) Abstract
Magnetic abrasive finishing (MAF) is a precise polishing method that the cutting tool is a group of magnetic abrasives, which the abrasion pressure is controlled by a magnetic filed. A limited amount of material will be removed by conducting a relative motion between the work surface and the abrasives, so as to obtain a mirrorlike finished surface. Owing to the magnetic field, the magnetic abrasives will gather to form a flexible magnetic brush. Thus the magnetic abrasives can move and polish along the profile of a complex surface, so the surface with complex shapes can be finished. Furthermore, the disturbances from the structure due to vibration or chatter will not affect the quality of the finished surface. The unbonded magnetic abrasive (UMA) used in this study is a mechanical mixture of ferromagnetic particles and abrasives. The finishing characteristics of UMA in cylindrical MAF are investigated, and then an application on improving the electrical discharge machined surfaces is performed. Experimental results demonstrate that the finishing characteristics of UMA are as good as those of sintered magnetic abrasives, which is much more expensive than UMA. The surface roughness of the SKD11 workpiece with HRC55 hardness can be improved from 0.25mm Ra to 0.042mm Ra after a few minutes of finishing. An improved MAF, which transfers the abrasion pressure to the abrasives through a sheet of unwoven cloth, can further improve the surface roughness of the workpiece to a level of 0.017mm Ra. Concerning the peripheral electrical discharge machined surfaces, MAF can remove the recast layer and the micro cracks easily, and a refined surface of 0.04mm Ra will be obtained. To elevate the finishing performance, an electrolytic magnetic abrasive finishing (EMAF), which is a compound polishing process by involving the traditional MAF and electrolysis, is developed. The passive film, whose hardness is lower than that of the original metal surface, is produced on the work surface, and is then removed by MAF during processing of EMAF. The finishing characteristics of EMAF are investigated, and then the results are compared with those of MAF concerning the cylindrical finishing of the SKD11 workpiece and the internal finishing of a circular pipe with AISI 304 stainless steel. Experimental results show that the finishing characteristics of EMAF are better than that of MAF. Despite what kind of surface is finished, EMAF yields a better surface roughness and higher material removal than MAF did. Especially in the case of the cylindrical finishing of SKD11, a mirrorlike finished surface of 0.017mm Ra can be produced from 0.178mm Ra after 5 minutes of finishing using EMAF. This study describes the principles of the process of MAF and EMAF, the finishing characteristics of surface roughness and material removal, and the associated mechanisms. Additionally, the theory, that the path of the electrolytic ions toward the anode surface is changed into a cycloid curve under the effect of the Lorentz force, and the forms of the passive film that is produced on the work surface in EMAF, are also described in detail. Some experiments on the only electrolytic process without MAF are performed to analyze the synergistic effect between MAF and electrolysis. Experimental results show that EMAF will produce rather large amount of extra material removal under proper process conditions due to the synergism of them. To determine the optimum process conditions for improving the surface finish and increasing the material removal in cylindrical EMAF, experiments using the Taguchi method and L18 orthogonal array are performed. Further, the significances of the control factors are identified with the assistance of analysis of variance (ANOVA).
關鍵字(中) ★ 變異數分析
★ 田口法
★ 協同效果
★ 材料移除量
★ 表面粗糙度
★ 洛侖茲力
★ 鈍化膜
★ 電解
★ 複合拋光
★ 磁性磨粒
★ 磁力研磨
★ SKD11
★ AISI 304
關鍵字(英) ★ magnetic abrasives
★ AISI 304
★ SKD11
★ ANOVA
★ Taguchi method
★ synergistic
★ material removal
★ surface roughness
★ Lorentz force
★ passive film
★ compound polishing process
★ electrolysis
★ magnetic abrasive finishing
論文目次 目 錄
中文摘要 I
英文摘要 III
謝誌 V
目錄 VI
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景 4
1-3 文獻回顧 6
1-3-1 磁力研磨 6
1-3-2 電化學加工 12
1-3-3 電化學機械拋光 13
1-3-4 鈍化膜 14
1-4 研究方法 18
1-5 本論文之構成 19
第二章 磁力研磨應用於圓柱面拋光 21
2-1 前言 21
2-2 基本原理 22
2-3 實驗方法與研究內容 26
2-3-1 實驗設備 26
2-3-2 實驗材料與實驗條件 29
2-3-3 實驗前準備與研究內容 31
2-4 結果與討論 33
2-4-1 非結合式磁性磨料之研磨特性 33
2-4-2 試件之硬度對研磨特性之影響 43
2-4-3 Micro-Vickers微硬度之比較 45
2-4-4 研磨表面之成份和抗腐蝕能力分析 46
2-4-5 精進型磁力研磨 49
2-5 結論 53
第三章 磁力研磨應用於放電加工表面改善 55
3-1 前言 55
3-2 研究方法 58
3-2-1 田口實驗計劃法 58
3-2-2 變異數分析及F檢定(F-test) 61
3-3 實驗方法與研究內容 63
3-3-1 實驗設備與試件準備 63
3-3-2 實驗規劃與實驗條件 64
3-3-3 研究內容 68
3-4 結果與討論 69
3-4-1 田口法分析最佳參數組合 69
3-4-2 變異數分析 72
3-4-3 驗證實驗 75
3-4-4 實驗因子研磨效果之比較 77
3-4-5 最佳參數組合之應用條件 79
3-4-6 表面粗糙度之改善 80
3-4-7 再凝固層之改善 80
3-5 結論 82
第四章 電解磁力研磨應用於圓柱面拋光 83
4-1 前言 83
4-2 基本原理 87
4-2-1 陽極極化曲線 87
4-2-2 電化學加工 90
4-2-3 電解磁力研磨之工作原理 91
4-2-4 洛侖茲力 96
4-3 實驗方法與研究內容 97
4-3-1 實驗設備 97
4-3-2 實驗材料與實驗條件 100
4-3-3 田口實驗計劃 102
4-3-4 研究內容 103
4-4 結果與討論 104
4-4-1 電解磁力研磨與純磁力研磨之拋光特性比較 104
4-4-1-1 不同磨粒之影響 104
4-4-1-2 不同工件轉速之影響 107
4-4-2 電解磁力研磨之拋光特性 111
4-4-2-1 工件轉速之影響 111
4-4-2-2 電極間隙之影響 115
4-4-2-3 磁通密度之影響 117
4-4-2-4 添加潤滑劑之影響 119
4-4-2-5 電解電流之影響 121
4-4-3 純電解作用之拋光特性 125
4-4-4 磁力研磨與電解作用之協同效果 127
4-4-5 電解磁力研磨實驗參數最佳化 129
4-4-5-1 表面粗糙度改善率之最佳參數組合 129
4-4-5-2 材料移除量之最佳參數組合 134
4-4-5-3 驗證實驗 138
4-5 結論 140
第五章 電解磁力研磨應用於圓管內表面拋光 142
5-1 前言 142
5-2 基本原理 144
5-3 實驗方法與研究內容 148
5-3-1 實驗設備 148
5-3-2 實驗材料與實驗條件 151
5-3-3 研究內容 153
5-4 結果與討論 153
5-4-1 電解磁力研磨與純磁力研磨之拋光特性比較 153
5-4-2 電解磁力研磨之拋光特性 155
5-4-2-1 電解液濃度之影響 155
5-4-2-2 電解電流之影響 157
5-4-3 純電解作用之拋光特性 161
5-4-4 磁力研磨與電解作用之協同效果 162
5-5 結論 164
第六章 總結論 165
參考文獻 168
參考文獻 參考文獻
[1] T. Shinmura, K. Takazawa, E. Hatano, Study on magnetic-abrasive finishing – rounding condition and its confirmation by experiment, J. of JSPE, Vol. 52, No. 9, pp. 1598-1603, 1986. (in Japanese)
[2] 進村武男, 磁氣研磨法の研究 – 研磨仕上表面の性狀, J. of JSPE, Vol. 53, No. 11, pp. 1791-1793, 1987. (in Japanese)
[3] P.I. Yascheritsin, L.E. Sergeev, The comparative appraisal of quality characteristics of holes after different finishing methods, Advanced Performance Materials, Vol. 4, No. 3, pp. 337-347, Jul. 1997.
[4] 進村武男、波田野栄十、高伬孝哉, 磁氣研磨法の研究 – 迴轉磁極によゐ內面および球面の研磨, J. of JSPE, Vol. 52, No. 8, pp. 1390-1392, 1986. (in Japanese)
[5] T. Shinmura, H. Yamaguchi, Study on a new internal finishing process by the application of magnetic abrasive machining (Internal finishing of stainless steel tube and clean gas bomb), JSME International Journal, Series C, Vol. 38, No. 4, pp. 798-804, 1995.
[6] H. Yamaguchi, T. Shinmura, A. Kobayashi, Development of an internal magnetic abrasive finishing process for nonferromagnetic complex shaped tubes, JSME International Journal, Series C, Vol. 44, No. 1, pp. 275-281, 2001.
[7] 刘晋春、赵家齐,特种加工(第2版), 机械工业出版社, 臺灣高等教育出版社, 1994.
[8] Y. Zhao, S. Jiang, J. Zhou, New kind of machine tool for magnetic abrasive finishing complex surface, Chinese Journal of Mechanical Engineering, Vol. 36, No. 3, pp. 100-103, Mar. 2000. (in Chinese)
[9] 黃孟祥, 磁氣研磨法於微細電極表面拋光技術之研究, 國立雲林科技大學機械工程研究所碩士論文, 2000.
[10] 黃文科, 磁氣研磨拋光之研究, 國立雲林科技大學機械工程研究所碩士論文, 2001.
[11] 張榮顯, 磁力研磨加工應用於放電加工表面改善之研究, 國立中央大學機械工程研究所碩士論文, 2001.
[12] 鄭棕仁, 電解與磁力研磨之複合加工技術研究, 國立中央大學機械工程研究所碩士論文, 2002.
[13] 莊政儒, 磁力研磨法應用於方管內表面精磨之研究, 華梵大學機電工程研究所碩士論文, 2002.
[14] 進村武男, 磁氣研磨法に関すゐ–實驗 – 電解複合研磨, J. of JSPE, Vol. 55, No. 6, pp. 1109-1111, 1989. (in Japanese)
[15] M. Anzai, H. Otaki, Y. Ayabe, S. Takahashi, E. Kawashima, T. Nakagawa, Manufacturing of ferrite-base abrasives for magnetic-electrolytic polishing and it’s finishing characteristics, Journal of the Japan Society of Powder and Powder Metallurgy, Vol. 40, No. 8, pp. 833-836, Aug. 1993.
[16] J.-D. Kim, D.-X. Jin, M.-S. Choi, Study on the effect of a magnetic field on an electrolytic finishing process, Int. J. of Machine Tools & Manufacture, Vol. 37, No. 4, pp. 401-408, 1997.
[17] J.C. Fang, Z.J. Jin, W.J. Xu, Y.Y. Shi, Magnetic electrochemical finishing machining, Journal of Materials Processing Technology, Vol. 129, pp. 283-287, 2002.
[18] J.-D Kim, M.-S. Choi, Development of the magneto-electrolytic abrasive polishing system (MEAPS) and finishing characteristics of a Cr-coated roller, Int. J. of Machine Tools & Manufacture, Vol. 37, No. 7, pp. 997-1006, 1997.
[19] J.-D. Kim, Y.-M. Xu, Y.-H. Kang, Study on the characteristics of magneto-electrolytic-abrasive polishing by using the newly developed nonwoven-abrasive pads, Int. J. of Machine Tools & Manufacture, Vol. 38, pp. 1031-1043, 1998.
[20] Y. Zheng, Z. Yao, X. Wei, W. Ke, The synergistic effect between erosion and corrosion in acidic slurry medium, Wear, 186-187, pp. 555-561, 1995.
[21] F.J. Friedersdorf, G.R. Holcomb, Pin-on-disk corrosion-wear test, Journal of Testing and Evaluation, pp. 352-357, 1998.
[22] I. García, D. Drees, J.P. Celis, Corrosion-wear of passivating materials in sliding contacts based on a concept of active wear track area, Wear, 249, pp. 452-460, 2001.
[23] S. Fujimoto, K. Tsujino, T. Shibata, Growth and properties of Cr-rich thick and porous oxide films on Type 304 stainless steel formed by square wave potential pulse polarization, Electrochimica Acta, Vol. 47, pp. 543-551, 2001.
[24] J. Zhang, J. Yuan, Y. Qiao, C. Cao, J. Zhang, G.D. Zhou, The corrosion and passivation of SS304 stainless steel under square wave electric field, Materials Chemistry and Physics, Vol. 79, pp. 43-48, 2003.
[25] T. Shinmura, K. Takazawa, E. Hatano, Study on magnetic-abrasive process – application to plane finishing, Bull. Japan Soc. of Prec. Engg., Vol. 19, No. 4, pp. 289-291, Dec. 1985.
[26] T. Shinmura, E. Hatano, K. Takazawa, Development of plane magnetic-abrasive finishing apparatus and its finishing performance, J. of JSPE, Vol. 52, No. 6, pp. 1080-1086, 1986. (in Japanese)
[27] T. Shinmura, E. Hatano, K. Takazawa, Development of spindle-finish type finishing apparatus and its finishing performance using a magnetic abrasive machining process, Bull. Japan Soc. of Prec. Engg., Vol. 20, No. 2, pp. 79-84, June 1986.
[28] T. Shinmura, T. Aizawa, Development of plane magnetic abrasive finishing apparatus and its finishing performance (2nd report) – finishing apparatus using a stationary type electromagnet, J. of JSPE, Vol. 54, No. 5, pp. 928-933, 1988. (in Japanese)
[29] T. Shinmura, Study on plane magnetic abrasive finishing (3rd report) – on the finishing characteristics of non-ferromagnetic substances, J. of JSPE, Vol. 55, No. 7, pp. 1271-1276, 1989. (in Japanese)
[30] T. Shinmura, T. Aizawa, Study on magnetic abrasive finishing process – development of plane finishing apparatus using a stationary type electromagnet, Bull. Japan Soc. of Prec. Engg., Vol. 23, No. 3, pp. 236-239, Sep. 1989.
[31] T. Shinmura, F.H. Wang, T. Aizawa, Study on a new finishing process of fine ceramics by magnetic abrasive machining – on the improving effect of finishing efficiency obtained by mixing diamond magnetic abrasives with ferromagnetic particles, J. of JSPE, Vol. 59, No. 8, pp. 1251-1256, 1993. (in Japanese)
[32] T. Shinmura, K. Takazawa, E. Hatano, T. Aizawa, Study on magnetic-abrasive process – finishing characteristics, Bull. Japan Soc. of Prec. Engg., Vol. 18, No. 4, pp. 347-348, Dec. 1984.
[33] T. Shinmura, K. Takazawa, E. Hatano, T. Aizawa, Study on magnetic abrasive process – process principle and finishing possibility, Bull. Japan Soc. of Prec. Engg., Vol. 19, No. 1, pp. 54-55, March 1985.
[34] T. Shinmura, K. Takazawa, E. Hatano, Study on magnetic-abrasive process – application to edge finishing, Bull. Japan Soc. of Prec. Engg., Vol. 19, No. 3, pp. 218-220, Sep. 1985.
[35] T. Shinmura, K. Takazawa, E. Hatano, Study on magnetic-abrasive finishing (1st report) – on process principle and a few finishing characteristics, J. of JSPE, Vol. 52, No. 5, pp. 851-857, 1986. (in Japanese)
[36] T. Shinmura, K. Takazawa, E. Hatano, T. Aizawa, Study on magnetic abrasive finishing (2nd report) – finishing characteristics, J. of JSPE, Vol. 52, No. 10, pp. 1761-1767, 1986. (in Japanese)
[37] 進村武男、高伬孝哉、波田野栄十, 磁氣研磨法の研究 – 研磨特性に及ぼす加工液の影響, J. of JSPE, Vol. 52, No. 11, pp. 1902-1904, 1986. (in Japanese)
[38] T. Shinmura, K. Takazawa, E. Hatano, Study on magnetic-abrasive finishing – effects of machining fluid on finishing characteristics, Bull. Japan Soc. of Prec. Engg., Vol. 20, No. 1, pp. 52-54, Mar. 1986.
[39] T. Shinmura, E. Hatano, K. Takazawa, The development of magnetic abrasive finishing and its equipment by applying a rotating magnetic field, Bulletin of JSME, Vol. 29, No. 258, pp. 4437-4443, Dec. 1986.
[40] T. Shinmura, K. Takazawa, E. Hatano, Study on magnetic-abrasive finishing (3rd report) – finishing characteristics of non-ferromagnetic substances, J. of JSPE, Vol. 53, No. 9, pp. 1440-1446, 1987. (in Japanese)
[41] T. Shinmura, K. Takazawa, E. Hatano, Study on magnetic abrasive finishing – effects of various types of magnetic abrasives on finishing characteristics, Bull. Japan Soc. of Prec. Engg., Vol. 21, No. 2, pp. 139-141, June 1987.
[42] T. Shinmura, Development of magnetic abrasive finishing apparatus using vibratory magnetic poles and its finishing performance, J. of JSPE, Vol. 54, No. 11, pp. 2170-2175, 1988. (in Japanese)
[43] T. Shinmura, Development of a unit system magnetic abrasive finishing apparatus using permanent magnets, Bull. Japan Soc. of Prec. Engg., Vol. 23, No. 4, pp. 313-315, Dec. 1989.
[44] T. Shinmura, K. Takazawa, E. Hatano, M. Matsunaga, Study on magnetic abrasive finishing, Annals of the CIRP, Vol. 39, No. 1, pp. 325-328, 1990.
[45] M.D. Krymsky, Magnetic abrasive finishing, Metal Finishing, Vol. 91, No. 7, pp. 21-25, July 1993.
[46] K. Tsuchiya, Y. Shimizu, K. Sakaki, M. Sato, Polishing mechanism of magnetic abrasion, Journal of the Japan Institute of Metals, Vol. 57, No. 11, pp. 1333-1338, 1993. (in Japanese)
[47] M. Fox, K. Agrawal, T. Shinmura, R. Komanduri, Magnetic abrasive finishing of rollers, Annals of the CIRP, Vol. 43, No. 1, pp. 181-184, 1994.
[48] G.Z. Kremen, E.A. Elsayed, V.I. Rafalovich, Mechanism of material removal in the magnetic abrasive process and the accuracy of machining, International Journal of Production Research, Vol. 34, No. 9, pp. 2629-2638, Sep. 1996.
[49] P. Jayakumar, S. Ray, V. Radhakrishnan, Optimising progress parameters of magnetic abrasive machining to reduce the surface roughness value, Journal of Spacecraft Technology, Vol. 7, No. 1, pp. 58-64, Jan. 1997.
[50] A.B. Khairy, Aspects of surface and edge finish by magnetoabrasive particles, Journal of Materials Processing Technology, Vol. 116, pp. 77-83, 2001.
[51] V.K. Jain, P. Kumar, P.K. Behera, S.C. Jayswal, Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process, Wear, 250, pp. 384-390, 2001.
[52] T. Shinmura, T. Aizawa, Study on internal finishing of a non-ferromagnetic tubing by magnetic abrasive machining process, J. of JSPE, Vol. 54, No. 4, pp. 767-773, 1988. (in Japanese)
[53] T. Shinmura, T. Aizawa, Study on internal finishing of a non-ferromagnetic tubing by magnetic abrasive machining process, Bull. Japan Soc. of Prec. Engg., Vol. 23, No. 1, pp. 37-41, Mar. 1989.
[54] T. Shinmura, A new internal finishing process of a non-ferromagnetic tubing by applying a rotating magnetic field, J. of JSPE, Vol. 55, No. 10, pp. 1880-1885, 1989. (in Japanese)
[55] T. Shinmura, H. Yamaguchi, Y. Shinbo, A new internal finishing process of a non-ferromagnetic tubing by applying a rotating magnetic field, Int. J. Japan Soc. Prec. Eng., Vol. 26, No. 4, pp. 302-304, Dec. 1992.
[56] T. Shinmura, H. Yamaguchi, T. Aizawa, A new internal finishing process of a non-ferromagnetic tubing by applying a magnetic field – the development of a unit type finishing apparatus using permanent magnets, J. of JSPE, Vol. 59, No. 1, pp. 161-166, 1993. (in Japanese)
[57] T. Shinmura, H. Yamaguchi, Study on a new internal finishing process of a non-ferromagnetic tubing by applying a linearly travelling magnetic field – on the process principle and the behaviours of magnetic finishing tool, J. of JSPE, Vol. 59, No. 7, pp. 1139-1144, 1993. (in Japanese)
[58] H. Yamaguchi, T. Shinmura, Study on a new internal finishing process by the application of magnetic abrasive machining (2nd report, effects of magnetic field distribution on magnetic force acting on magnetic abrasives), Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 60, No. 578, pp. 3539-3545, Oct. 1994. (in Japanese)
[59] H. Yamaguchi, T. Shinmura, New internal finishing process by application of magnetic abrasive machining (3rd report, effects of finishing pressure distribution on characteristics), Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 61, No. 586, pp. 2605-2611, June 1995. (in Japanese)
[60] H. Yamaguchi, T. Shinmura, Study on a new internal finishing process by the application of magnetic abrasive machining – discussion of the cylindricity, J. of JSPE, Vol. 61, No. 7, pp. 996-1000, 1995. (in Japanese)
[61] J.-D. Kim, M.-S. Choi, Simulation of an internal finishing process of rectangular tube using a magnetic field, Wear, 184, pp. 67-71, 1995.
[62] J.-D Kim, M.-S. Choi, Simulation for the prediction of surface accuracy in magnetic abrasive machining, Journal of Materials Processing Technology, Vol. 53, No. 3-4, pp. 630-642, 1995.
[63] H. Yamaguchi, T. Shinmura, Study on a new internal finishing process by application of magnetic abrasive machining (4th report, effects of diameter of magnetic abrasives on finishing characteristics), Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 61, No. 591, pp. 4470-4475, Nov. 1995. (in Japanese)
[64] H. Yamaguchi, T. Shinmura, K. Kuga, New internal finishing process applying magnetic abrasive machining (5th report, effects of magnetic abrasive behavior on finishing characteristics), Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 62, No. 600, pp. 3313-3319, Aug. 1996. (in Japanese)
[65] H. Yamaguchi, T. Shinmura, Study on a new internal finishing process by the application of magnetic abrasive machining – discussion of the roundness, J. of JSPE, Vol. 62, No. 11, pp. 1617-1621, 1996. (in Japanese)
[66] H. Yamaguchi, T. Shinmura, Study of the surface modification resulting from an internal magnetic abrasive finishing process, Wear, 225-229, pp. 246-255, 1999.
[67] H. Yamaguchi, T. Shinmura, Study of an internal magnetic abrasive finishing using a pole rotation system – discussion of the characteristic abrasive behavior, Precision Engineering, Vol. 24, pp. 237-244, 2000.
[68] J.-D. Kim, Polishing of ultra-clean inner surfaces using magnetic force, The Int. J. of Advanced Manufacturing Technology, Vol. 21, pp. 91-97, 2003.
[69] T. Shinmura, Magnetic field assisted finishing process and its industrial applications, 表面科學, Vol. 22, No. 3, pp. 173-178, 2001. (in Japanese)
[70] M. Anzai, E. Kawashima, H. Otaki, T. Nakagawa, Magnetic abrasive finishing of WC-CO curved surfaces, Proceedings of the International Conference on Machining of Advanced Materials, NIST Special Publication n847, pp. 415-422, Jun 1993.
[71] T. Masuzawa, S. Sakai, Quick finishing of WEDM products by ECM using a mate-electrode, Annals of the CIRP, Vol. 36, No. 1, pp. 123-126, 1987.
[72] R. Rokicki, Electropolishing of high nickel alloys, Metal Finishing, pp. 103-104, June 1993.
[73] S.G.S. Raman, K.A. Padmanabhan, Effect of electropolishing on the room-temperature low-cycle fatigue behaviour of AISI 304LN stainless steel, International journal of fatigue, Vol. 17, No. 3, pp. 179-182, 1995.
[74] H. Hocheng, P.S. Pa, Electropolishing and electrobrightening of holes using different feeding electrodes, Journal of Materials Processing Technology, Vol. 89-90, pp. 440-446, 1999.
[75] E.-S. Lee, Machining characteristics of the electropolishing of stainless steel (STS316L), The Int. J. of Advanced Manufacturing Technology, Vol. 16, pp. 591-599, 2000.
[76] H. Ramasawmy, K. Stout, L. Blunt, Effect of secondary processing on EDM surfaces, Surface Engineering, Vol. 16, No. 6, pp. 501-505, 2000.
[77] H. Ramasawmy, L. Blunt, 3D Surface topography assessment of the effect of different electrolytes during electrochemical polishing of EDM surfaces, Int. J. of Machine Tools & Manufacture, Vol. 42, pp. 567-574, 2002.
[78] H. Hocheng, P.S. Pa, The application of turning tool as the electrode in electropolishing, Journal of Materials Processing Technology, Vol. 120, pp. 6-12, 2002.
[79] 柯宏偉、林勝結、黃清安, 淬火硬化之粉末冶金高速鋼(ASP 23)在過氯酸-醋酸混合液之電解拋光行為, 中國機械工程學會第十九屆全國學術研討會論文集, pp. 699-706, 2002.
[80] 謝逸凡、楊勝淵、黃清安、楊焜松、鍾志清, 全淨沃斯田鐵系不銹鋼(316L)在磷-硫酸混合液之電解拋光行為, 中國機械工程學會第十九屆全國學術研討會論文集, pp. 659-666, 2002.
[81] 陳玉全、金東燮、張国林, 磁力電解加工, 哈爾濱科學技術大學學報, Vol. 16, No. 2, pp. 12-15, June 1992.
[82] J.C. Fang, Z.J Jin, X.Y Wang, W.J Xu, J.J Zhou, S.C Jiang, Study on magnetic electrochemical finishing machining, Journal of Dalian University of Technology, Vol. 39, No. 6, pp. 761-765, Nov. 1999. (in Chinese)
[83] Y. Kimoto, Y. Kakino, S. Nakagawa, A study on high shape accuracy electrolytic-abrasive mirror finishing, J. of JSPE, Vol. 54, No. 2, pp. 353-358, 1988. (in Japanese)
[84] Z. Wang, Y. Luan, T. Pang, W. Liu, Elastic and electrolytic ultraprecision polishing, Metal Finishing, pp. 22-24, July 1998.
[85] 何效聰, 非傳統加工―電化學機械拋光, 元智大學機械工程研究所碩士論文, 1999.
[86] 李碩仁、賴建璋, 網罩模具曲面電化學機械拋光技術研究, 中國機械工程學會第十八屆全國學術研討會論文集, pp. 711-717, 2001.
[87] L. Kwiatkowski, F. Mansfeld, Surface modification of stainless steel by an alternating voltage process, Journal of the Electrochemical Society, Vol. 140, No. 3, pp. L39-L41, March 1993.
[88] P. Schmuki, H. Böhni, F. Mansfeld, A photoelectrochemical investigation of passive films formed by alternating voltage passivation, Journal of the Electrochemical Society, Vol. 140, No. 7, pp. L119-L121, July 1993.
[89] F. NAVAÏ, Effects of tensile and compressive stresses on the passive layers formed on a type 302 stainless steel in a normal sulphuric acid bath, Journal of Materials Science, Vol. 30, pp. 1166-1172, 1995.
[90] E. M. Gutman, G. Solovioff, D. Eliezer, The mechanochemical behavior of type 316L stainless steel, Corrosion Science, Vol. 38, No. 7, pp. 1141-1145, 1996.
[91] S. Fujimoto, S. Kawachi, T. Nishio, T. Shibata, Impedance and photoelectrochemical properties of porous oxide film on Type304 stainless steel formed by square wave potential pulse polarization, Journal of Electroanalytical Chemistry, Vol. 473, pp. 265-271, 1999.
[92] Q. Yang, J.L. Luo, The effects of hydrogen on the breakdown of passive films formed on Type 304 stainless steel, Thin Solid Films, Vol. 371, pp. 132-139, 2000.
[93] F.J. Pérez, M.P. Hierro, C. Gómez, L. Martínez, D. Duday, Silicon ion implantation on austenitic and ferritic stainless steels against localized aqueous corrosion, Surface and Coatings Technology, Vol. 133-134, pp. 344-350, 2000.
[94] M.F. López, A. Gutiérrez, F.J. Pérez Trujillo, M.P. Hierro, F. Pedraza, Applications of soft X-ray absorption spectroscopy to the study of passive and oxide layers on stainless steels: influence of ion implantation, Journal of Electron Spectroscopy and Related Phenomena, Vol. 114-116, pp. 825-829, 2001.
[95] X.Y. Wang, Y.S. Wu, L. Zhang, Z.Y. Yu, Atomic force microscopy and X-ray photoelectron spectroscopy study on the passive film for type 316L stainless steel, Corrosion, Vol. 57, No. 6, pp. 540-546, June 2001.
[96] M.G.S. Ferreira, N.E. Hakiki, G. Goodlet, S. Faty, A.M.P. Simões, M.D.C. Belo, Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel, Electrochimica Acta, Vol. 46, pp. 3767-3776, 2001.
[97] V. Vignal, R. Oltra, M. Verneau, L. Coudreuse, Influence of an elastic stress on the conductivity of passive films, Materials Science and Engineering A, Vol. 303, pp. 173-178, 2001.
[98] Y. Zuo, H. Wang, J. Xiong, The aspect ratio of surface grooves and metastable pitting of stainless steel, Corrosion Science, Vol. 44, pp. 25-35, 2002.
[99] X.Y. Wang, D.Y. Li, Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel, Electrochimica Acta, Vol. 47, pp. 3939-3947, 2002.
[100] C.-O.A. Olsson, D. Landolt, Passive films on stainless steels ― chemistry, structure and growth, Electrochimica Acta, Vol. 48, pp. 1093-1104, 2003.
[101] K. Ogura, M. Tsujigo, K. Sakurai, J. Yano, Electrochemical coloration of stainless steel and the scanning tunneling microscopic study, Journal of the Electrochemical Society, Vol. 140, No. 5, pp. 1311-1315, May 1993.
[102] K. Ogura, K. Sakurai, S. Uehara, Room temperature coloration of stainless steel by alternating potential pulse method, Journal of the Electrochemical Society, Vol. 141, No. 3, pp. 648-651, March 1994.
[103] J.X. Zhang, J. Chen, Y.N. Qiao, C.N. Cao, S.S. Cheng, Colored passive film on 304 stainless steel, Journal of Chinese Society for Corrosion and Protection, Vol. 18, No. 4, pp. 311-315, Dec. 1998. (in Chinese)
[104] J. Li, Y.G. Zheng, J.Q. Wang, Z.M. Yao, Z.F. Wang, W. Ke, Depassivation and repassivation of AISI 321 stainless steel surface during solid particle impact in 10% H2SO4 solution, Wear, 186-187, pp. 562-567, 1995.
[105] S. Mischler, S. Debaud, D. Landolt, Wear-accelerated corrosion of passive metals in tribocorrosion systems, Journal of the Electrochemical Society, Vol. 145, No. 3, pp. 750-758, March 1998.
[106] Y. Okazaki, Effect of friction on anodic polarization properties of metallic biomaterials, Biomaterials, Vol. 23, pp. 2071-2077, 2002.
[107] D. Sazou, Current oscillations and mass-transport control during electrodissolution of iron in phosphoric acid solutions, Electrochimica Acta, Vol. 42, No. 4, pp. 627-637, 1997.
[108] J. Li, D.J. Meier, An AFM study of the properties of passive films on iron surfaces, Journal of Electroanalytical Chemistry, Vol. 454, pp. 53-58, 1998.
[109] M. Seo, M. Chiba, Nano-mechano-electrochemistry of passive metal surfaces, Electrochimica Acta, Vol. 47, pp. 319-325, 2001.
[110] E. Sosa, R. Cabrera-Sierra, M.T. Oropeza, F. Hernández, N. Casillas, R. Tremont, C. Cabrera, I. González, Electrochemically grown passive films on carbon steel (SAE 1018) in alkaline medium, Electrochimica Acta, Vol. 48, pp. 1665-1674, 2003.
[111] D.R. Askeland, The Science and Engineering of Materials, Brooks / Cole Engineering Division, Monterey, CA, 1985.
[112] 張季娜、羅仕勇、宋振昌、蔡璋文· · ·等,田口式品質工程導論,中華民國品質管制學會, 1992.
[113] M.S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, Englewood Cliffs, NJ 07633, 1989.
[114] 曹楚南, 腐蝕電化學, 化學工業出版社, 北京, 1994.
[115] M.N.O. Sadiku, Elements of Electromagnetics, 2nd ed., Saunders College Publishing, Harcourt Brace College Publishers, 1994.
[116] S.A. Bradford, Corrosion Control, Van Nostrand Reinhold, 1993.
指導教授 顏炳華(Biing-Hua Yan) 審核日期 2004-1-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明