博碩士論文 87343012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.135.208.189
姓名 楊授印(Shou-Yinn Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應
(Premixed Turbulent Combustion:Effects of Fractal Characteristics, Equivalence Ratio,and Radiative Heat Loss )
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混甲烷紊焰拉伸量測,應用高速PIV★ 氫能利用:過焓觸媒熱電產生器之實作研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對預混紊流燃燒領域提出一實驗研究,含三個重點:預混紊焰之碎形分析、輻射熱損失效應對預混紊焰之影響及預混紊焰整體熄滅(global quenching)機制之探討。實驗用燃氣以研究級甲烷和丙烷為主,其與空氣混合後之當量比(?),從貧油到富油甲烷燃氣為? = 0.6 ~ 1.45 而丙烷燃氣為? = 0.6 ~ 1.95,含蓋甚廣之燃氣當量比範圍。燃燒實驗於一十字型燃燒器進行,十字型燃燒器乃由兩個相互垂直圓柱鋼管所組成,在大的水平圓柱管兩底端各裝置了一組反向旋轉風扇及空孔板,可於兩圓柱中心測試區內產生一強烈近似等向性紊流場。我們使用高速雷射斷層攝影術,由高速CCD攝影機擷取記錄預混紊焰前緣隨時間變化之動態影像,並用co-dimension和stepping-caliper碎形分析方法,獲取預混紊焰隨紊流強度變化之碎形維度和內外截止長度等之物理量。有關輻射熱損失效應之研究,藉著加入不同比例之稀釋氣體(含氮氣和二氧化碳),來改變燃氣之輻射熱損失程度,並以自製離子探針及光電倍增管等設備來量測輻射熱損失對紊流燃燒速度的影響。有關預混紊焰整體熄滅之研究,我們於測試區前視窗及下視窗各裝置一組高速攝影機作同步拍攝,來決定預混紊焰向下傳播之動態過程。若預混紊焰被具足夠大強度之紊流所熄滅,無法通過強烈近似等向紊流中心區,即為整體熄滅,反之則為非整體熄滅。我們並以氣體分析儀量測實驗後之殘餘氣體濃度,比較未發生和發生預混紊焰整體熄滅之燃料殘留濃度,以確定整體熄滅發生之紊流拉伸條件,即以Bradley所定義之紊流Karlovitz 數,K = 0.157(u?/SL)2ReT-0.5=0.157Ka來判斷,其中u?為能量平均紊流強度,SL為層流燃燒速度,ReT = u?LI/v為紊流雷諾數, LI為紊流積分長度和v為反應物之運動粘滯係數,而Ka則為一般所定義之Karlovitz數。
本研究使所量得之碎形維度遠低於先前大部分相關之實驗結果,平均僅約2.18,且其值於1 < u?/SL < 10 範圍內變化不大;先前大部分實驗,應用不同反應紊流場如Bunsen flames, V-shape flame 及 IC engine flame 等,得到當u?/SL > 3 時,碎形維度會趨近於2.33。我們找到內外截止長度均接近一定值,大體上不隨u?/SL和?值而變,外截止長度略小於未反應之紊流積分長度且比內截止長度大一個級數。我們以K和?值來界定預混紊焰整體熄滅發生和未發生之邊界,將此邊界的臨界值表示為Kc。在固定反應燃氣SL ? 10 cm/s的條件下,比較加入氮氣(具低輻射熱損失)和加入二氧化碳(具高輻射熱損失)的甲烷-空氣預混焰,發現在貧油條件? = 0.7時,加入氮氣的預混紊焰若要整體熄滅Kc值需達約為4.8,而加入二氧化碳之預混紊焰Kc值僅需約3.7。而在富油條件? = 1.4時,加入氮氣和加入二氧化碳的甲烷-空氣火焰,Kc值均約為1.3。由此可知輻射熱損失對預混紊焰之影響,在貧油燃燒時特別顯著,但於富油燃燒時幾無效應。本研究有助於建立一以物理參數為基準之評估機制,可用於瞭解預混紊焰傳播和整體熄滅,對內燃機、新一代往復式引擎和大氣氣爆有所助益。
摘要(英) This thesis is related to the study of premixed turbulent combustion using a large cruciform burner that has previously established in our combustion laboratory at NCU. The cruciform burner consisted of a long vertical vessel and a horizontal vessel. The former can be used to provide a downwardly propagating premixed flame with pressure release valves via an ignition modulus on the top of the vertical vessel. The latter was equipped with a pair of counter-rotating fans and perforated plates at each end to generate intense near-isotropic turbulence between the two perforated plates. Thus, flame-turbulence interactions without the influence of ignition can be achieved. Turbulence statistics and visualizations of turbulent flame fronts were obtained using laser Doppler velocimetry and a high-speed laser tomography technique. Three focuses are respectively fractal characteristics of these wrinkled turbulent flames, effect of radiative heat losses on turbulent burning velocities, and global quenching conditions of premixed turbulent flames. Concerning effect of radiative heat loss on turbulent premixed flames, we employ several diluted CH4/air flames with different degrees of radiative heat loss, from small (N2-diluted) to large (CO2-diluted), in the cruciform burner, over a wide range of turbulent intensities (u?/SL) where SL is the laminar burning velocity.
Using both the co-dimension and the stepping-caliper methods to analyze these laser tomography wrinkled turbulent flame images, we found that the mean fractal dimension d3 increases slowly from about 2.1 when u?/SL ? 1 to only 2.18 when 5 < u?/SL < 10, nearly independent of u?/SL. This is finding is in support of a recent Bunsen-flame result found by Gülder and his co-workers (2000), but conflicting with several previous results in which the fractal dimension was found to approach a value of 2.33 when u?/SL > 3. The inner and outer cutoffs, ?i and ?o, respectively, are found to be nearly constant for all flames studied. ?o is found to be slightly smaller than the integral length scale of unreacted turbulence and is an order of magnitude greater than ?i. It is found that the present fractal data cannot predict ST/SL correctly when the available fractal closure model such as the model of Gouldin (1987) was used, indicating a limit of the fractal model. By comparing N2- and CO2-diluted CH4/air flames of the same SL, effect of radiative heat loss plays an important role on lean CH4/air flames, while it has little influence on rich CH4/air flames. For lean mixtures at the same SL and u?/SL, values of ST/SL and/or Kc for CH4/CO2/air flames (large heat loss) are found to be considerable smaller than that of CH4/N2/air flames (small heat loss), revealing that the radiative heat loss may inhibit turbulent premixed flame propagation. These results may be relevant to the development of internal combustion engines, new-generation reciprocating engines, and atmospheric explosions.
關鍵字(中) ★ 預混紊流燃燒
★ 碎形特性
★ 當量比
★ 輻射熱損失效應
關鍵字(英) ★ Turbulent premixed combustion
★ Fractal Characteristics
★ Equivalence Ratio
★ Radiative Heat Loss
論文目次 英文摘要 ii
致謝 iii
符號說明 iv
目錄 vii
圖表目錄 x
第一章 前言 1
1.1為何研究預混紊流燃燒? 1
1.2 為何要使用十字型燃燒爐? 3
1.3研究重點 5
1.4 論文架構 7
第二章 文獻回顧 9
2.1 薄碎焰概念(flamelet concept) 9
2.2 預混紊流燃燒狀態圖(Phase Diagram) 10
2.3 預混焰之拉伸效應 12
2.4 薄碎焰模式(flamelet models) 14
2.4.1 Bray-Moss-Libby 模式 14
2.4.2 火焰表面密度傳輸方程式(?-Equation) 16
2.4.3 碎形分析 17
2.5 輻射熱損失效應 19
2.5.1火焰傳播速度之影響 20
2.5.2 預混焰散射光量測 21
2.5.3 整體熄滅機制 23
2.6 均勻等向性之紊流場 25
第三章 實驗及分析方法 31
3.1 雷射斷層攝影術 31
3.1.1 光路架設 31
3.1.2 粒子釋放系統 32
3.1.3 火焰影像擷取系統 32
3.1.4 影像分析系統 33
3.2 離子探針 34
3.3 光電倍增管 35
3.4 雙攝影機法 36
3.5 殘餘氣體量測 37
3.5.1 紅外線光譜分析儀 38
3.5.2 Thermal Conductivity Detector檢測器(見圖3.9) 38
3.6 碎形維度理論模式及分析方法 39
3.6.1 co-dimension 40
3.6.2 stepping caliper 40
3.6.3 火焰前緣影像二值化 41
3.6.4 碎形維度與截止長度 41
第四章 結果與討論 56
4.1 碎形特性 56
4.1.1 碎形維度和紊流強度之關係 56
4.1.2 截止長度尺度 58
4.1.3 碎形分析模式預測紊流燃燒速度 58
4.2紊流燃燒速度與散射光強度量測 60
4.2.1紊流燃燒速度 60
4.2.1 輻射熱損失對散射光強度量測之影響 62
4.2.1.1 全波段光線 63
4.2.1.2 OH* (306.5 nm)波段 64
4.2.1.3 CH* (430 nm)波段 65
4.2.1.4 C2* (514.5 nm)波段 65
4.3 整體熄滅機制 66
4.3.1 火焰傳遞,帶狀火焰,整體熄滅 66
4.3.2 可執行區域與不可執行區域 67
4.3.3 整體熄滅區域及預測曲線 69
4.3.4 正拉伸和輻射熱損失 70
第五章 結論及未來工作 83
5.1 結論 83
5.2 未來工作 85
參考文獻 87
參考文獻 Abdel-Gayed, R. G., Al-khishali, K. J., and Bradley, D., “Turbulent Burning Velocities and flame straining in explosions”, Proc. R. Soc. Lond. A, Vol. 391:393-414 (1984).
Abdel-Gayed, R. G., Bradley, D., Hamid, M. N., and Lawes, M. “Lewis number effects on turbulent burning velocity”, Twenty Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp.505-512 (1984).
Abdel-Gayed, R., Bradley, D., and Lawes, M., “Turbulent burning velocities, pp. a general correlation in terms of strain rates”, Proc. R. Soc. (London) A, Vol. 414, pp. 389-413 (1987).
Aldredge, R. C., Vaezi, V., and Ronney, P. D., “Premixed-flame propagation in turbulent Taylor-Couette flow”, Combust. Flame, Vol. 115, pp. 395-405 (1998).
Anand, M. S. and Pope, S. B., “Calculation of prmixed turbulent flames by PDF methods”, Combust. Flame, Vol. 67, pp. 127-142 (1987).
Boughanem, H., and Trouvé, A., Twenty-Seventh Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 971 (1998).
Boudier, P., Henriot, S., Poinsot, T., and Baritaud, T. A., “A model for turbulent flame ignition and propagation in spark ignition engines”, Twenty-fourth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 503-510 (1992).
Bradley, D., “How fast can we burn?”, Twenty-fourth Symposium(International) on Combustion. The Combustion Institute, Pittsburgh, pp. 247-262 (1992).
Bray, K. N. C., “Studies of the turbulent burning velocity”, Proc. Roy. Soc. (London) A, Vol. 431, pp. 315-335 (1990).
Bray, K. N. C., Libby, P. A., and Moss, J. B., “Scalar length scale variations in premixed turbulent flames”, Twenty Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 421-427 (1984).
Bray, K. N. C., Libby, P. A., and Moss, J. B., “Unified modeling approach for premixed turbulent combustion – part 1: general formulation”, Combust. Flame, Vol. 93, pp. 445-456 (1985).
Breidenthal, R. E., Tong, K. O., Wong, G. S., Hamerquist, R. D., and Landry, P. B., “Turbulent mixing in two-dimensional ducts with transverse jets”, AIAAI ,. Vol. 27 (11), pp. 1867-1869 (1986).
Candel, S. and Poinsot, T., “Flame stretch and the balance equation for the flame area”, Combust. Sci. Tech., Vol. 70, pp. 1-15 (1990).
Cant, R. S., Pope, S. B. and Bray, K. N. C., “Modeling of flamelet surface-to-volume ratio in turbulent premixed combustion”, Twenty-third Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 809-815 (1990).
Candel, S. M., Veynante, D., Lacas, F., Maistret, E., Darabiha, N., and Poinsot, T., “Coherent flamelet model, : applications and recent extensions”, in Recent Advances in Combustion Modelling (R. Larroututou, Ed.), World Scientific, Singapore, Vol. 6, pp. 19-64(1990).
Chang, N. W., Shy, S. S., Yang, S. I., and Yang, T. S., “Spatially Resolved Using Premixed Methane-Air Flames in a Near-Homogeneous Turbulence”, Combust. Flame, Vol. 127, pp. 1880-1894 (2001).
Chen, Y. C., Private Communication (1996).
Cheng, R. K. and Shepherd. I. C., “The influence of burner geometry on premixed turbulent flame propagation”, Combust. Flame, Vol. 85, pp. 7-26 (1991).
Chew, T. C., Bray, K. N. C., and Britter, R., Combust. Flame, Vol. 80, pp. 65 (1990)
Correa, S. M., “A review of Nox formation under gas-turbine combustion conditions”, Combust. Sci. Tech., Vol. 87, pp. 329 (1992).
Correa, S. M., and Gulati, A., “Measurements and modeling of a bluff body stabilized flame”, Combust. Flame, Vol. 89, pp. 195-213 (1992).
Damköhler, G., “The effect of turbulent on the flame velocity in gas mixtures”, Elektrochem, Vol. 46, pp. 601-652 (1940) [English transl. NACA Tech. Mem. 1112, 1947].
Dandekar, K. V. and Gouldin, F. C., AIAA Journal, Vol. 20, pp. 652 (1982).
Darabiha, N., Candel, S., and Marble, F., Combust. Flame, Vol. 64, pp. 203 (1986).
Deschamps, B., Boukhalfa, A., Chauveau, C., Gökalp, I., Shepherd, I. G., and Cheng, R. K., “An experimental estimation of flame surface density and mean reaction rate in turbulent premixed flames”, Fourteenth Symposium(International) on Combustion. The Combustion Institute, Pittsburgh, pp. 469-475 (1992).
Driscoll, J. F., Sutkus, D. J., Roberts, W. L., Post, M. E., and Goss, L. P., “The strain exerted by a vortex on a flame – determined from velocity field images”, Combust. Sci. Tech., Vol. 96, pp. 213-229 (1994).
Egolfopoulos, F. N., Cho, P., and Law, C. K., “Laminar flame speed of methane-air mixtures inder reduced and elevated pressures”, Combust. Flame, Vol. 76, pp. 375-391 (1989).
Giovangigli, V., and Smooke, M. D., “Extinction of strained premixed laminar flames with complex chemistry”, Combust. Sci. Tech. Vol. 53, pp. 23-49 (1987).
Gouldin, F. C., “An application of fractals to modeling premixed turbulent flames”, Combust. Flame”, Vol. 68, pp. 249-266 (1987).
Gouldin, F. C., Bray, K. N. C., and Chen, J. C., Combust. Flame, Vol. 77, pp. 241 (1989).
Gulati, A. and Driscoll, T. F., “Velocity-density correlations and Favre averages measured in a premixed turbulent combustion”, Combust. Sci. Tech., Vol. 48, pp. 285-307 (1986).
Gülder, Ö. L. and Smallwood, G. J., “Inner cut-off scale of flame surface wrinkling in turbulent premixed flames”, Combust. Flame, Vol. 103, pp. 107-114 (1995).
Gülder, Ö. L. and Smallwood, G. J., Wong, R., Snelling, D. R., Smith, R., Deschamps, B. M., and Sautet, J. C., “Flame front surface characteristics in turbulent premixed propane/air combustion”, Combust. Flame, Vol. 120, pp. 407-416 (2000).
Hentschel, H. G. E. and Procaccia, I., Phys. Rev. Lett., Vol. 49, pp. 1158 (1982).
Heywood, J.B., “Internal combustion engine fundamentals”, Internal combustion engine fundamentals (1988)
Ishizuka, S., and Law, C. K., Nineteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 327 (1982).
Karlovitz, B., Denniston, D. W., Knapschaefer, D. H., and Wells, F. E., Fourth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 613 (1953).
Kerstein, A. R., “Fractal dimension of turbulent premixed flames”, Combust. Sci. Tech., Vol. 60, pp. 441-445 (1988).
Kido, H., Huang, S., Tanoue, H., and Nitta, T., “Improving the combustion performance of lean hydricarbon mixture by hydrogen addition”, JSAE Review., Vol. 15, pp. 165-167 (1996).
Kostiuk, L. W., Bray, K.N.C., and Cheng, R. K., “Experimental study of premixed turbulent combustion in opposed streams Part II: reacting flow field and extinction”, Combust. Flame, Vol. 92, pp. 396-409 (1993).
Law, C. K., Zhu, D. L., and Yu, G.., “Propagation and extinction of stretched premixed flames”, Twenty-first Symposium(International) on Combustion. The Combustion Institute, Pittsburgh, pp. 1419-1426 (1986).
Law, C. K., “Dynamics of stretched flames”, Twenty-second Symposium(International) on Combustion. The Combustion Institute, Pittsburgh, pp. 1381-1402 (1988).
Lee, T. –W., North, G. L., and Santavicca, D. A., “Curvature and orientation statistics of turbulent premixed flames fronts”, Combust. Sci. Tech., Vol. 84, pp. 121-132 (1992).
Lee, T. –W., North, G. L., and Santavicca, D. A., “Surface properties of turbulent premixed propane/air flame at various Lewis numbers”, Combust. Flame, Vol. 93, pp. 445-456 (1993).
Libby, P., Liñàn, A., and Williams, F., Combust. Sci. Tech. Vol. 34, pp. 257 (1983).
Marble, F. E. and Broadwell, J. E.,Project Squid Technical Report TRW-9-PU, USA (1977).
Mandelbrot, B. B., J. Fluid Mech., Vol. 72, pp. 401 (1975).
Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman, New York (1983).
Mantzaras, J., Felton, P. G., and Bracco, F. V., “Fractal and turbulent premixed engine flames”, Combust. Flame, Vol. 77, pp. 295-310 (1989).
Mantzaras, J., Felton, P. G., and Bracco, F. V., SAE Paper No. 881635 (1988).
Meneveau, C., and Poinsot, T., “Stretching ang quenching of flamelets in premixed turbulent combustion”, Combust. Flame, Vol. 86, pp. 333-346 (1991).
Muller, C. K., and Driscoll, J. F., “Effects of unsteady stretch of a freely-propagation flame wrinkled by a vortex”, Twenty-sixth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 347-355 (1996).
Murayama, M. and Takeno, T., “Fractal-like character of flamelets in turbulent premixed combustion”, Twenty-second Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 551-559 (1988).
North, G. L. and Santavicca, D. A., “The fractal nature of premixed turbulent flames”, Combust. Sci. Tech., Vol. 72, pp. 215-232 (1990).
Nye, D. A., Lee, J. G., Lee, -T. W., and Santavicca, D. A., “Flame stretch measurements during the interaction of premixed flames and Kármán vortex streets using PIV”, Combust. Flame, Vol. 105, pp. 167-179 (1996).
Peters, N., “Turbulent Combustion”, Cambridge University Press, Cambridge, 2000.
Peters, N., “Laminar Flamelet Concepts in Turbulent Combustion”, Twenty-first Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 1231 (1986).
Poinsot, T., Veynante, D., and Candel, S.,”Quenching processes and premixed turbulent combustion diagram”, J. Fluid Mech., Vol. 228, pp. 561-606 (1991).
Pope, S. B. and Cheng, W. K., “The stochastic flamelet model of turbulent premixed combustion”, Twenty-second Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 781-789 (1988).
Pope, S. B., and Anand, M. S., “Flamelet and distribusted combustion in premixed turbulent flames”, Twenty Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 403-410 (1984).
Pope, S. B., “Evolution of Surface in Turbulence”, Int. J. Eng. Sci., Vol. 26, pp. 445 (1988).
Prasad, R. R., and Sreenivasan, K. R., “The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flow”, Phys. Fluid A., Vol. 2, pp. 792-807 (1990)
Roberts, W. L., Driscoll, J, F., Drake, M. C., and Ratcliffe, J. W., Twenty-fourth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 169 (1992).
Roberts, W. L., Driscoll, J. F., Drake, M. C., and Goss, L. P., Combust. Flame, Vol. 94, pp. 58 (1993).
Ronney, P. D. and Yakhot, V., “Flame broadening effects on premixed turbulent flame speed”, Combust. Sci. Tech., Vol. 86, pp. 31-43 (1992).
Samaniego, J. M., and Mantel, T.,”Fundamental mechanism in premixed turbulent flame propagation via vortex-flame interaction Part I: experiment”, Combust. Flame, Vol. 118, pp. 537-556 (1999).
Sato, J., Nineteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 1541 (1982).
Seshadri, K., and Peters, N., Combust. Flame, Vol. 81, pp. 96 (1990).
Seshadri, K., Bai, X. S., and Pitsch, H., “Asymptotic structure of rich methane-air flames”, Combust. Flame, Vol. 127, pp. 2265-2277 (2001).
Shepherd, I. G., and Cheng, R. K., Combust. Sci. Tech., Vol. 33, pp. 231 (1988).
Shy, S. S., and Ronney, P. D., Buckley, S. G., and Yakhot, V., “Experimental simulation of premixed turbulent combustion using aqueous autocatalytic reaction”, Twenty-fourth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 543-551 (1992).
Shy, S. S., Jang, R. H., I, W. K. and Gee, K. L.,”Three-dimensional spatial flamelet statistics for premixed turbulent combustion modeling”, Twenty-sixth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 283-289 (1996a).
Shy, S. S., Jang, R. H., and Tang, C. Y., “Simulation of turbulent burning velocities using aqueous autocatalytic reaction in a nearhomogeneous turbulent”, Combust. Flame, Vol. 105, pp. 54-67 (1996b).
Shy, S. S., I, W. K., Lee, E. I., and Yang, T. S., “Experimental analysis of fine scale structure in an aqueous vibrating-grids turbulence”, Combust. Flame, Vol. 118, pp. 606 (1999).
Shy, S. S., Lee, E. I., Chang, N. W., and Yang, S. I., “Direct and indirect measurements of flame surface density, orientation, and curvature for premixed turbulent combustion modeling in a cruciform burner”, Proc. Combust. Inst., Vol. 28, pp. 383-390 (2000a).
Shy, S. S., I, W. K., and Lin, M. L., “A new cruciform burner and its turbulence measurements for premixed turbulent combustion study”, Exp. Thermal Fluid Sci., Vol. 20, pp. 105-114 (2000b).
Shy, S. S., Lin, W. J., and Peng, K. Z., ”High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner”, Proc Combust. Inst., Vol. 28, pp. 561-568 (2000c).
Shy, S. S., Lin, W. J., and Wei, J. C., ”An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion”, Proc. R. Soc. (London) A, Vol. 456, pp. 1997-2019 (2000d).
Sreenivasan, K. R. and Meneveau, C.,J. Fluid Mech., Vol. 173, pp. 357-386 (1986).
Stone, R., Clarke, A., and Beckwith, P., “Correlation for the laminar-burning velocity of methane/diluent/air mixtures obtained in free-fall experiments”, Combust. Flame, Vol. 114, pp. 546-555 (1998).
Yang, S. I., and Shy, S. S., “Measurements of fractal properties of premixed turbulent flames and their relation to turbulent burning velocities”, The Chinese Journal of Mech., Vol. 17, pp. 93-101 (2001).
Yang, S. I., and Shy, S. S., “Global quenching of premixed CH4/air flame: effects of turbulent straining equivalence ratio, and radiative heat loss”, Proc. Combust. Inst., Vol. 29, pp. 1841-1847 (2002).
Trouvé, A. and Poinsot, T., “The evolution equation for the flame surface density in turbulent premixed combustion”, J. Fluid Mech., Vol. 278, pp. 1-31 (1994).
Vagelopoulos, C. M., Egolfopoulos, F. N., and Law, C. K., “Further consideration on the determination of laminar flame speeds with the counterflow twin-flame technique”, Twenty-fifth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 1341-1347 (1994).
Veynante, D., Duclos, J. M., and Piana, J., “Experimental analysis of flamelet models for premixed turbulent combustion”, Twenty-fifth Symposium(International) on Combustion. The Combustion Institute, Pittsburgh, pp. 1249-1256 (1994).
Veynante, D., Piana, J., Duclos, J. M., and Martel, C., Twenty-sixth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp. 413 (1996).
Veynante, D., Duclos, J. M., and Piana, J., Centre de Recherche sur la Combustion Turbulente, Report 1993-1994.
Veynante, D., Trouvé, A., Bray, K. N. C., and Mantel, T., “Gradient and countergradient scalar transport in turbulent premixed flames”, J. Fluid Mech., Vol. 332, pp. 263-293 (1997).
Veynante, D., and Poinsot, T., “Effects of pressure gradients on turbulent premixed flames”, J. Fluid Mech., Vol. 353, pp. 83-114 (1997).
Williams, F. A., Combustion Theory, 2nd Edition., Addison-Wesley, Redwood City (1985).
Yakhot, V., “Propagation velocity of premixed turbulent flames”, Combust. Sci. Tech., Vol. 60, pp. 191-214 (1988).
尹偉光 (1996) 預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及未來發展. 國立中央大學機械工程研究所, 碩士論文。
林孟良 (1998) 氣態預混紊流燃燒速度量測於一近似等向性紊流場. 國立中央大學機械工程研究所, 碩士論文。
林文基 (1999) 甲烷與丙烷預混紊流燃燒速度的量測. 國立中央大學機械工程研究所, 碩士論文。
魏建璋 (1999) 預混紊流燃燒應用雷射斷層射影術. 國立中央大學機械工程研究所, 碩士論文。
李以霠 (1999) 預混紊流燃燒火焰表面密度傳輸方程式之實驗分析. 國立中央大學機械工程研究所, 碩士論文。
彭光榮 (2000) 低紊流強度預混焰之傳播及高紊流強度預混焰之媳滅. 國立中央大學機械工程研究所, 碩士論文。
指導教授 施聖洋(S. S. Shy) 審核日期 2003-10-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明