博碩士論文 88323063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.142.40.195
姓名 諶貴花(Qui-Hua Zhan )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 摻鎂鈮酸鋰浮點式熔區熱流現象之探討
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗以LHPG 系統探討摻鎂鈮酸鋰浮點式熔區之流場型
態、熔區界面及溫度等各項參值隨不同之添加量及外加功率之變化。
在熔解之過程中,我們發現純鈮酸鋰從熔解初期至熔區崩潰前,
熔區均呈現穩態之熱張力對流,而摻鎂鈮酸鋰在氧化鎂添加量大於
1mol%以後,熔區開始產生非穩態之振盪性熱張力對流。
熔區表面溫度之振盪頻率隨功率、馬諾哥尼數Ma1、熔區長度及
普蘭度數之增加而下降。在同一普蘭度數下,長徑比越大臨界馬諾哥
尼數Ma2c越低熔區越易引發非穩態之振盪。熔區之幾何外型與熔區振
盪之引發有關。
普蘭度數、密度差與靜龐德數隨著氧化鎂添加量而改變熔區物理
性質,使熔區外型隨功率之變化有很大的不同,進而影響熔區之溫
度、流場及界面,而LHPG 之加熱特性,也使得熔區之加熱量隨外型
而變。
論文目次 摘要 ----------------------------------------------------------------------I
誌謝 ---------------------------------------------------------------------II
目錄 --------------------------------------------------------------------- III
表目錄 ------------------------------------------------------------------ V
圖目錄 ------------------------------------------------------------------ VI
符號說明 --------------------------------------------------------------- X
第一章 緒論 ------------------------------------------------------------ 1
1-1 前言 ----------------------------------------------------------------------- 1
1-2 LHPG 熔區流場型態 ----------------------------------------------2
1-2-1 熔區之熱張力對流 ----------------------------------------------- 2
1-2-2 熔區之表面溫度 ----------------------------------------------- 5
1-2-3 熔區外型 ----------------------------------------------------------- 5
1-2-4 固液界面 ----------------------------------------------------------- 6
1-3 添加氧化鎂對鈮酸鋰之影響 ----------------------------------------- 7
1-3-1 Prandtl Number ----------------------------------------------- 8
1-3-2 Bond Number ----------------------------------------------- 8
1-4 研究動機及目的 ----------------------------------------------------------- 9
第二章 實驗設備及材料--------------------------------------------- 10
2-1 實驗設備 ------------------------------------------------------------------ 10
2-2 光學理論 ------------------------------------------------------------------ 1 2
2-3 實驗材料 ------------------------------------------------------------------ 1 3
IV
2-4 實驗方法 ------------------------------------------------------------------ 14
第三章 結果與討論 ----------------------------------------------------15
3-1 熔區流場型態 ------------------------------------------------------------ 1 5
3-1-1 穩態之熱張力對流---純鈮酸鋰之熔解 --------------------- 15
3-1-2 非穩態之熱張力對流---摻鎂鈮酸鋰之熔解 --------------- 19
3-2 摻鎂鈮酸鋰之熔解 --------------------------------------------------- -- 23
3-2-1 1mol%摻鎂鈮酸鋰 --------------------------------------------- 23
3-2-2 3mol%摻鎂鈮酸鋰 --------------------------------------------- 26
3-2-3 5mol%摻鎂鈮酸鋰 --------------------------------------------- 27
3-2-4 7mol%摻鎂鈮酸鋰 --------------------------------------------- 28
3-3 純鈮酸鋰與摻鎂鈮酸鋰之比較 -------------------------------------- - 29
第四章 結論 ------------------------------------------------------------- 31
參考文獻 ------------------------------------------------------------------- 33
參考文獻 [1] P. Zhang, Z. yin, L. L. Wang, S. N. Zhu and M. S. Zhang, Photorefractive effect in
periodically poled lithium niobate and lithium tantalate and in MgO-doped lithium
niobate, J. Krn. Phy. Society 32 (1998) S450.
[2] M. Nakamura, M. Sugihara and M. Kotoh, Quasi-phase-matched optical parametric
oscillator using periodically poled MgO-doped LiNbO3 crystal, Jpn. J. Appl. Phys. 38
(1999) L1234 (2).
[3] 賴彥志,雜質與組成對鈮酸鋰晶纖生長以及結構之影響,國立中央大學機械
工程研究所博士論文,民國89 年。
[4] Y. J. Lai, J. C. Chen and K. C. Liao, Investigations of ferroelectric domain structures
in the MgO:LiNbO3 fibers by LHPG, J. Crystal Growth 198/199 (1999) 531.
[5] A. Brenier, G. Foulon, M. ferriol and G. Boulon, The laser-heated-pedestal growth of
LiNbO3:MgO crystal fibers with ferroelectric domain inversion by in situ electric field
poling, J. Phys. D: Appl. Phys. 30 (1997) L37.
[6] T. Hibiya, S. Nakamura and T. Azami and Maragoni flow of molten silicon, Acta
Astronautica 48 2-3 (2001) 71.
[7] R. Velten, D. Schewabe and A. Scharmann, The periodic instability of the
thermocapillary convection in cylindrical liquid bridges, Phys. Fluids A 3 2 (1991)
267.
[8] J.C. Chen and G. H. Chin, Linear stability analysis of thermocapillary convection in
the floating zone, J. Crystal Growth 154 (1995) 98.
[9] C.H. Chun, Experiments on steady and oscillatory temperature distribution in a
34
floating zone due to the Marangoni convection, Acta Astronautica 7 (1980) 497.
[10] Y.K. Yang and S. Kou, Temperature oscillation in a tin liquid bridge and critical
Marangoni number dependency on Prandtl number, J. Crystal Growth 222 (2001) 135.
[11] Z. Zeng, H. Mizuseki, K. Higashino and Y. Kawazoe, Direct numerical simulation of
oscillatory Marangoni convection in cylindrical liquid bridges, J. Crystal Growth 204
(1999) 395.
[12] M. Cheng and S. Kou, Detecting temperature oscillation in a silicon liquid bridge, J.
Crystal Growth 218 (2000) 132.
[13] M. Schweizer, A. Croll, P. Dold , Th. Kaiser, M. Lichtensteiger and K.W. Benz,
Measurement of temperature fluctuation and microscopic growth rates in a silicon
floating zone under microgravity, J. Crystal Growth 203 (1999) 500.
[14] S. Nakamura, T. Hibiya and K. Kakimoto, Temperature fluctuations of the
Marangoni flow in a liquid bridge of molten silicon under microgravity on board the
TR-IA-4 rocket, J. Crystal Growth 186 (1998) 85.
[15] D. Schwabe, R. Velten and A. Scharmann, The instability of surface tension driven
flow in models for floating zone under normal and reduced gravity, J. Crystal Growth
99 (1990) 1258.
[16] L.B.S. Sumner and G.P. Neitzel, Oscillation thermocapillary convection in liquid
bridges with highly deformed free surfaces: experiments and energy-stability analysis,
Phys. Fluids 13 (2001) 107.
[17] Z.M. Tang and W. R. Hu, Influence of liquid bridge volume on the onset of
oscillation in floating –zone convection III. Three-dimensional model, J. Crystal
Growth 207 (1999) 239.
[18] Z. M. Tang, W. R. Hu and N. Imaishi, Two bifurcation transitions of the floating half
zone convection in a fat liquid bridge of larger Pr, Int. J. Heat Mass Transfer 44 (2001)
35
1299.
[19] Q. S. Chen and W.R. Hu, Influence of liquid bridge volume on instability of floating
half zone convection, Int. J. Heat Mass Transfer 41 (1998) 825.
[20] R. Monti, R. Savino and M. Lappa, Influence of geometrical aspect ratio on the
oscillatory Marangoni convection in liquid bridges, Acta Astronautica 47 (2000) 753.
[21] N.K. Udayashankar, K. Gopalakrishna Naik and H.L. Bhat, The influence of
temperature gradient and lowering speed on the melt-solid interface shape of GaxIn1-xSb
ally crystals grown by vertical Bridgman technique, J. Crystal Growth 203 (1999) 333.
[22] E. Tokizaki, K. Terashima and S. Kimura, Variations in the physical properties of
molten lithium niobate caused by doping with magnesium oxide, J. Crystal Growth
123 (1992) 121.
[23] H. Ogawa, H. Ohta and Y. Waseda, Thermal diffusivity measurement in LiNbO3
melts doped with MgO by laser flash method, J. Crystal Growth 133 (1993) 255.
[24] Y. Anzai, S. Kimura, T. Sawada, T. Rudolph and K. Shigematsu, Measurement of
density, viscosity and surface tension of molten lithium niobate, J. Crystal Growth 134
(1993) 227.
[25] X. Chen, Q. Wang, X. Wu and K. Lu, Densities and surface tensions of lithium
niobate melts, J. Crystal Growth 204 (1999) 163.
[26] X. Chen, Q. Wang, X. Wu and K. Lu, Temperature dependence of viscosity of
molten lithium niobate, J. Crystal Growth 218 (2000) 93.
[27] L. J. Hu, Growth and Characterization of MgO doped LiNbO Single Crystals,
Graduate School of Minerals, Metallurgy and Materials Science, National Cheng-Kung
University, R.O.C, (1991).
[28] J. C. Chen, C. Hu and Y. C. Lee, Temperature dependence of the emittance of LiF
and LiNbO3 in the near-infrared spectra, Jpn. J. Appl. Phys. 37 (1998) 4070.
36
[29] J. C. Chen, C. Hu and Y. C. Lee, Thermal radiative emission of LiF and LiNbO3 in
the near-infrared spectra, Jpn. J. Appl. Phys. 37 (1998) 224.
[30] C. Hu and J. C. Chen, Experimental observation of interface shapes in the floating
zone of lithium niobate during a CO2 laser melting, Int. J. Heat Mass Transfer. 39 16
(1996) 3347.
[31] J. C. Chen and C. Hu, A simple method of examining the propagation of defects in
the floating-zone solidification process of lithium niobate, J. Crystal Growth 166 (1996)
151.
[32] J. C. Chen and C. Hu, Measurement of the float-zone interface shape for lithium
niobate, J. Crystal Growth 149 (1995) 87.
[33] M. Levenstam, G. Amberg, T. Carlberg and M. Andersson, Experimental and
numerical studies of thermocapillary convection in a floating zone like configuration, J.
Crystal Growth 158 (1996) 224.
[34] Y.L Yao, F. Liu and W.R. Hu, How to determine critical Marangoni number in half
floating zone convection, Int. J. Heat Mass Transfer 39 12 (1996) 2539.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2001-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明