參考文獻 |
[1] P. Zhang, Z. yin, L. L. Wang, S. N. Zhu and M. S. Zhang, Photorefractive effect in
periodically poled lithium niobate and lithium tantalate and in MgO-doped lithium
niobate, J. Krn. Phy. Society 32 (1998) S450.
[2] M. Nakamura, M. Sugihara and M. Kotoh, Quasi-phase-matched optical parametric
oscillator using periodically poled MgO-doped LiNbO3 crystal, Jpn. J. Appl. Phys. 38
(1999) L1234 (2).
[3] 賴彥志,雜質與組成對鈮酸鋰晶纖生長以及結構之影響,國立中央大學機械
工程研究所博士論文,民國89 年。
[4] Y. J. Lai, J. C. Chen and K. C. Liao, Investigations of ferroelectric domain structures
in the MgO:LiNbO3 fibers by LHPG, J. Crystal Growth 198/199 (1999) 531.
[5] A. Brenier, G. Foulon, M. ferriol and G. Boulon, The laser-heated-pedestal growth of
LiNbO3:MgO crystal fibers with ferroelectric domain inversion by in situ electric field
poling, J. Phys. D: Appl. Phys. 30 (1997) L37.
[6] T. Hibiya, S. Nakamura and T. Azami and Maragoni flow of molten silicon, Acta
Astronautica 48 2-3 (2001) 71.
[7] R. Velten, D. Schewabe and A. Scharmann, The periodic instability of the
thermocapillary convection in cylindrical liquid bridges, Phys. Fluids A 3 2 (1991)
267.
[8] J.C. Chen and G. H. Chin, Linear stability analysis of thermocapillary convection in
the floating zone, J. Crystal Growth 154 (1995) 98.
[9] C.H. Chun, Experiments on steady and oscillatory temperature distribution in a
34
floating zone due to the Marangoni convection, Acta Astronautica 7 (1980) 497.
[10] Y.K. Yang and S. Kou, Temperature oscillation in a tin liquid bridge and critical
Marangoni number dependency on Prandtl number, J. Crystal Growth 222 (2001) 135.
[11] Z. Zeng, H. Mizuseki, K. Higashino and Y. Kawazoe, Direct numerical simulation of
oscillatory Marangoni convection in cylindrical liquid bridges, J. Crystal Growth 204
(1999) 395.
[12] M. Cheng and S. Kou, Detecting temperature oscillation in a silicon liquid bridge, J.
Crystal Growth 218 (2000) 132.
[13] M. Schweizer, A. Croll, P. Dold , Th. Kaiser, M. Lichtensteiger and K.W. Benz,
Measurement of temperature fluctuation and microscopic growth rates in a silicon
floating zone under microgravity, J. Crystal Growth 203 (1999) 500.
[14] S. Nakamura, T. Hibiya and K. Kakimoto, Temperature fluctuations of the
Marangoni flow in a liquid bridge of molten silicon under microgravity on board the
TR-IA-4 rocket, J. Crystal Growth 186 (1998) 85.
[15] D. Schwabe, R. Velten and A. Scharmann, The instability of surface tension driven
flow in models for floating zone under normal and reduced gravity, J. Crystal Growth
99 (1990) 1258.
[16] L.B.S. Sumner and G.P. Neitzel, Oscillation thermocapillary convection in liquid
bridges with highly deformed free surfaces: experiments and energy-stability analysis,
Phys. Fluids 13 (2001) 107.
[17] Z.M. Tang and W. R. Hu, Influence of liquid bridge volume on the onset of
oscillation in floating –zone convection III. Three-dimensional model, J. Crystal
Growth 207 (1999) 239.
[18] Z. M. Tang, W. R. Hu and N. Imaishi, Two bifurcation transitions of the floating half
zone convection in a fat liquid bridge of larger Pr, Int. J. Heat Mass Transfer 44 (2001)
35
1299.
[19] Q. S. Chen and W.R. Hu, Influence of liquid bridge volume on instability of floating
half zone convection, Int. J. Heat Mass Transfer 41 (1998) 825.
[20] R. Monti, R. Savino and M. Lappa, Influence of geometrical aspect ratio on the
oscillatory Marangoni convection in liquid bridges, Acta Astronautica 47 (2000) 753.
[21] N.K. Udayashankar, K. Gopalakrishna Naik and H.L. Bhat, The influence of
temperature gradient and lowering speed on the melt-solid interface shape of GaxIn1-xSb
ally crystals grown by vertical Bridgman technique, J. Crystal Growth 203 (1999) 333.
[22] E. Tokizaki, K. Terashima and S. Kimura, Variations in the physical properties of
molten lithium niobate caused by doping with magnesium oxide, J. Crystal Growth
123 (1992) 121.
[23] H. Ogawa, H. Ohta and Y. Waseda, Thermal diffusivity measurement in LiNbO3
melts doped with MgO by laser flash method, J. Crystal Growth 133 (1993) 255.
[24] Y. Anzai, S. Kimura, T. Sawada, T. Rudolph and K. Shigematsu, Measurement of
density, viscosity and surface tension of molten lithium niobate, J. Crystal Growth 134
(1993) 227.
[25] X. Chen, Q. Wang, X. Wu and K. Lu, Densities and surface tensions of lithium
niobate melts, J. Crystal Growth 204 (1999) 163.
[26] X. Chen, Q. Wang, X. Wu and K. Lu, Temperature dependence of viscosity of
molten lithium niobate, J. Crystal Growth 218 (2000) 93.
[27] L. J. Hu, Growth and Characterization of MgO doped LiNbO Single Crystals,
Graduate School of Minerals, Metallurgy and Materials Science, National Cheng-Kung
University, R.O.C, (1991).
[28] J. C. Chen, C. Hu and Y. C. Lee, Temperature dependence of the emittance of LiF
and LiNbO3 in the near-infrared spectra, Jpn. J. Appl. Phys. 37 (1998) 4070.
36
[29] J. C. Chen, C. Hu and Y. C. Lee, Thermal radiative emission of LiF and LiNbO3 in
the near-infrared spectra, Jpn. J. Appl. Phys. 37 (1998) 224.
[30] C. Hu and J. C. Chen, Experimental observation of interface shapes in the floating
zone of lithium niobate during a CO2 laser melting, Int. J. Heat Mass Transfer. 39 16
(1996) 3347.
[31] J. C. Chen and C. Hu, A simple method of examining the propagation of defects in
the floating-zone solidification process of lithium niobate, J. Crystal Growth 166 (1996)
151.
[32] J. C. Chen and C. Hu, Measurement of the float-zone interface shape for lithium
niobate, J. Crystal Growth 149 (1995) 87.
[33] M. Levenstam, G. Amberg, T. Carlberg and M. Andersson, Experimental and
numerical studies of thermocapillary convection in a floating zone like configuration, J.
Crystal Growth 158 (1996) 224.
[34] Y.L Yao, F. Liu and W.R. Hu, How to determine critical Marangoni number in half
floating zone convection, Int. J. Heat Mass Transfer 39 12 (1996) 2539. |