博碩士論文 88343008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.138.141.202
姓名 蔡憲忠(Shien-Chung Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 銅鉻電極及尿素加工液對放電加工表面改質效果之研究
(Surface Modification Effects by Electrical Discharge Machining with Cu-Cr Electrode and Urea Dielectric)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
放電加工表面因在加工液中受到急熱急冷作用容易產生微裂紋、氣孔、殘留應力等缺陷,這些缺陷不僅會造成加工表面精度不佳,更是造成機件使用壽命縮短的主因。因此如何維持加工效率的同時又能對放電加工表面進行改質強化,以提升加工表面之耐磨、耐蝕能力,是本文主要探討的主題。
經由本研究的實驗結果分析顯示,新開發的簡易複合電極以Cu-20wt%Cr的混合比例及在20MPa的壓力下所製作的電極具有最佳的材料去除率,而且實驗結果亦顯示在本實驗條件範圍內,此複合電極比傳統熔煉Cu電極具有更高的材料去除率,且其工件表面的微裂紋較少,再鑄層亦較薄,同時也發現複合電極之Cr成分會轉移到工件表面,增進表面耐蝕性能。而使用蒸餾水中添加尿素作為加工液對純鈦金屬之實驗,由於放電加工時產生高溫使尿素中解離出氮(N)元素並與工件材料(純鈦)產生化學作用,形成氮化鈦(TiN)的陶瓷表面硬化層;同時經由耐磨耗測試後發現,加工液中添加適量尿素可提升加工表面的耐磨耗能力、降低表面摩擦力,達到表面改質強化的效果。而在尿素加工液中添加鈦粉末進行放電加工時,由於添加粉末而造成極間間隙增大、促進放電分散的效應,使得加工屑容易排除,也因此促進放電穩定的進行,所以可提高材料的去除率、降低表面的粗糙度,同時尿素加工液中添加鈦粉末進行放電加工,會經由加工過程中放電柱的離子化作用解離出氮(N)元素並轉移至加工表面而形成表面改質層,將可提升加工表面的機械性質。
摘要(英) Abstract
The Electrical discharge machining (EDM) surfaces have the defects of microcracks, pores and residual stresses formed by the strong temperature gradient during machining. These defects result not only in poor surface precision, but also in a shortened service life of machinery parts. Thus, the machined surface modification and machining efficiency need to be considered simultaneously for EDM applications, and they are also the interesting topics in this investigation.
From the experimental results show that Cu-Cr composite electrodes with a Cu-20wt.%Cr mixing ratio and a 20 MPa sintering pressure obtained an excellent MRR. Moreover, this work also reveals that the composite electrodes obtained a higher MRR than Cu metal electrodes; the recast layer was thinner, and fewer cracks were present on the machined surface. Furthermore, the Cr contained in the composite electrode migrated to the work piece, resulting in good corrosion resistance of the machined surface after EDM. Moreover, workpiece surface modification by adding urea into the dielectric used in machining pure titanium metal. Experimental results indicate that the nitrogen element decomposed from the dielectric that contained urea, migrated to the work piece, forming a TiN hard layer, resulting in good wear resistance and exhibited improved friction of the machined surface after EDM. In addition, added conductive particle into urea solution could widen the discharge gap to facilitate the expelling of debris and divide the discharge energy to reduce the surface roughness. Moreover, the added powder could be transferred and penetrated to the machined surface by ionization of the discharge channels. Therefore, the machined surface achieves the modification and reinforcement.
關鍵字(中) ★ 放電加工
★ 複合電極
★ 表面改質
★ 尿素
關鍵字(英) ★ Electrical discharge machining
★ composite electrode
★ surface modification
★ urea
論文目次 目 錄
中文摘要 I
英文摘要 II
謝誌 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論1
1-1 研究動機與目的 1
1-2 研究的背景 2
1-3 文獻回顧 5
1-4 研究方法 12
1-5 本論文之構成 13
1-6 參考文獻 15
第二章 Cu-Cr複合電極之放電加工表面改質效果研究 24
2-1 前言 24
2-2 實驗方法 25
2-3 結果與討論 28
2-3-1 Cu-Cr複合電極製作條件對放電加工特性之影響 28
2-3-1-1 Cu-Cr粉末混合比例對材料去除率及電極消耗率之影響 28
2-3-1-2 Cu-Cr混合粉末燒結壓力對材料去除率及電極消耗率之影響 30
2-3-1-3 引弧電壓對材料去除率及電極消耗率之影響 32
2-3-1-4 不同加工極性對表面粗糙度的影響 34
2-3-1-5 最佳Cu-Cr複合電極之製作條件及加工電氣條件 38
2-3-2 Cu-Cr複合電極對放電加工特性的影響 39
2-3-2-1 Cu-Cr複合電極對材料去除率的影響 39
2-3-2-2 Cu-Cr複合電極對電極消耗率的影響 39
2-3-2-3 Cu-Cr複合電極對表面粗糙度的影響 41
2-3-3 Cu-Cr複合電極與熔煉Cu電極對放電加工特性的影響 43
2-3-4 銅鉻複合電極對表面改質的效果 45
2-3-4-1 加工表面元素分析 45
2-3-4-2加工表面微硬度分佈 47
2-3-4-3加工表面耐蝕性能 47
2-4 結論 50
2-5 參考文獻 51
第三章 尿素加工液對純鈦金屬放電加工之表面改質效果研究 53
3-1 前言 53
3-2 實驗內容與方法 54
3-3 結果與討論 57
3-3-1 不同加工液對放電加工特性的影響 57
3-3-2 尿素加工液對材料去除率的影響 57
3-3-3 尿素加工液對電極消耗率的影響 57
3-3-4 尿素加工液對表面粗糙度的影響 61
3-3-5 尿素加工液對表面改質的效果 63
3-3-5-1 加工表面成分分析 63
3-3-5-2 加工表面耐磨耗性能分析 64
3-3-5-3 加工表面微硬度分佈 68
3-4 結論 70
3-5 參考文獻 71
第四章 尿素加工液中添加鈦粉末對改善放電加工特性之研究 73
4-1前言 73
4-2 實驗方法 74
4-2-1實驗設備與方法 74
4-2-2實驗材料 74
4-3 結果與討論 77
4-3-1 尿素加工液中添加粉末對材料去除率的影響 77
4-3-2 尿素加工液中添加粉末對電極消耗率的影響 77
4-3-3 尿素加工液中添加粉末對表面粗糙度的影響 81
4-3-4 極性的影響 84
4-3-5 加工表面元素分析 87
4-3-6 加工表面接觸角的分析 89
4-4 結論 92
4-5 參考文獻 93
第五章 總結論 96
參考文獻 第一章
1. K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture 43 (2003) 1287–1300.
2. E.J. Weller, Nontraditional machining Processes, Society of Manufacturing Engineers, Dearborn, Michigan, USA. 2/e (1983).
3. T. Tamura, Y. Kobayashi, Measurement of impulsive forces and crater formation in impulse discharge, Journal of Materials Processing Technology 149 (2004) 212–216.
4. Y. Tsunekawa, M. Okumiya, N. Mohri, I. Takahashi, Surface modification of aluminium by electrical discharge alloying, Materials Science and Engineering A 174 (1994) 193–198.
5. M.S. Shunmugam, P.K. Philip, Improvement of wear resistance by EDM with tungsten carbide P/M electrode, Wear 171 (1994) 1-5.
6. J. Simao, D.K. Aspinwall, F. El-Menshawy, K. Meadows, Surface alloying using PM composite electrode materials when electrical discharge texturing hardened AISI D2, Journal of Materials Processing Technology 127 (2002) 211-216.
7. H.E. De Bruijn, T.H. Delft, A.J. Pekelaring, Effect of a magnetic field on the gap cleaning in EDM, Annals of the CIRP 27 (1) (1978) 93–95.
8. T. Kaneko, M. Tsuchiya, Three dimensionally controlled EDM using cylindrical electrodes, Journal Japan Society Electrical-Machining Engineering 18 (35) (1984) 1–14.
9. V.S.R. Murti, P.K. Philip, Comparative analysis of machining characteristics in ultrasonic assisted EDM by the response surface methodology, International Journal of Production Research 25 (2) (1987) 259–272.
10. M. Kunieda, T. Masuzawa, A fundamental study on a horizontal EDM, Annals of the CIRP 37 (1) (1988) 187–190.
11. K.P. Rajurkar, G.F. Royo, Improvement in EDM performance by R.F. control and orbital motion, American Society of Mechanical Engineers 34 (1989) 51-62.
12. J.S. Soni, G. Chakraverti, Machining characteristics of titanium with rotary electro-discharge machining, Wear 171 (1994) 51– 58.
13. Y.S. Wong, L.C. Lim, L.C. Lee, Effects of flushing on electro-discharge machined surfaces, Journal of Materials Processing Technology 48 (1995) 299–305.
14. P.M. Lonardo, A.A. Bruzzone, Effect of flushing and electrode material on die sinking EDM, Annals of the CIRP 48 (1) (1999) 123– 126.
15. B.H. Yan, C.C. Wang, W.D. Liu, F.Y. Huang, Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode, International Journal of Advanced Manufacturing Technology 16 (5) (2000) 322–333.
16. Y.H. Guu, H. Hocheng, Effects of workpiece rotation on machinability during electrical discharge machining, Materials and Manufacturing Processes 16 (1) (2001) 91–101.
17. J.D. Ayers, K. Moore, Formation of metal carbide powder by spark machining of reactive metals, Metallurgical Transactions A 15A (1984) 1117–1127.
18. P.C. Pandey, S.T. Jilani, Plasma channel growth and the resolidified layer in EDM, Precision Engineering 8 (2) (1986) 104–110.
19. T. Tsutsui, T. Tamura, Effect of the electro-discharge machined surface on the mechanical properties. On the surface defects and transverse rupture strength of cemented carbide, Bulletin of the Japan Society of Precision Engineering 20 (1) (1986) 60-61.
20. L.C. Lee, L.C. Lim, V. Narayanan, V.C. Venkatesh, Quantification of surface damage of tool steels after EDM, International Journal of Machine Tools & Manufacture 28 (4) (1988) 359–372.
21. L.C. Lee, L.C. Lim, Y.S. Wong, H.H. Lu, Towards a better understanding of the surface features of electro-discharge machined tool steels, Journal of Materials Processing Technology 24 (1990) 513–523.
22. L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu, Solidification microstructure of electrodischarge machined surfaces of tool steels, Materials Science Technology 7 (3) (1991) 239–248.
23. O.A. Abu Zeid, On the effect of electro-discharge machining parameters on the fatigue life of AISI D6 tool steel, Journal of Materials Processing Technology 68 (1) (1997) 27–32.
24. B.H. Yan, C.C. Wang, H.M. Chow, Y.C. Lin, Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite, International Journal of Machine Tools & Manufacture 40 (10) (2000) 1403–1421.
25. Y.H. Guu, H. Hocheng, C.Y. Chou, C.S. Deng, Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel, Materials Science and Engineering A358 (2003) 37–43.
26. K.M. Shu, G.C. Tu, Study of electrical discharge grinding using metal matrix composite electrodes, International Journal of Machine Tools & Manufacture 43 (2003) 845–854.
27. W. Theisen, A. Schuermann, Electro-discharge machining of nickel–titanium shape memory alloys, Materials Science and Engineering A378 (2004) 200–204.
28. G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, R. Flükiger, Microstructure at submicron scale of the white layer produced by EDM technique, Journal of Materials Processing Technology 149 (2004) 289–295.
29. J. S. Soni, G. Chakraverti, Machining characteristic of titanium with rotary electro-discharge machining, Wear 171(1993) 51-58.
30. B. H. Yan, M. D. Chen, Effect of ultrasonic vibration on electrical discharge machining characteristic of Ti-6Al-4V alloy, Journal of Japan Institute Light Metals 44 (5) (1993) 281-285.
31. S.L. Chen, F.Y. Huang, Y. Suzuki, B.H. Yan, Improvement of material removal rate of Ti-6Al-4V alloy by electrical discharge machining with multiple ultrasonic vibration, Journal of Japan Institute of Light Metals 47 (4) (1997) 220–225.
32. S.L. Chen, B.H. Yan, F.Y. Huang, Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4V, Journal of Materials Processing Technology 87 (1999) 107–111.
33. Y.C. Lin, B.H. Yan, Y.S. Chang, Machining characteristics of titanium alloy (Ti-6Al-4V) using combination process of EDM with USM, Journal of Materials Processing Technology 104 (2000) 171–177.
34. H.M. Chow, B.H. Yan, F.Y. Huang, J.C. Hung, Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining, Journal of Materials Processing Technology 101 (2000) 95–103.
35. W.H. Zhao, Z.L. Wang, S.C. Di, G. X. Chi, H.Y. Wei, Ultrasonic and electric discharge machining to deep and small hole on titanium alloy, Journal of Materials Processing Technology 120 (2002) 101–106.
36. G.W. Qin, K. Oikawa, G.D.W. Smith, S.M. Hao, Wire electric discharge machining induced titanium hydride in Ti–46Al–2Cr alloy, Intermetallics 11 (2003) 907– 910.
37. P.E. Berghausen, H.D. Brettschneider, M. F. Davis, Electrodischarge machining program, The Cincinnati Milling Mc. Co. Final report ASD-TR-63-7-545 (1963).
38. K.M. Teshima, T. Sata, Performance of working fluid in high speed EDM, (1970) 26-34.
39. A. Erden, D. Temel, Investigation on the use of water as a dielectric liquid in electric discharge machining, in: Proceedings of the 22nd Machine Tool Design and Research Conference, Manchester (1981) 437– 440.
40. W. König, L. Jörres, Aqueous solutions of organic compounds as dielectrics for EDM sinking, Annals of the CIRP 36 (1987) 105–109.
41. R. Kranz, F. Wendl, K.-D. Wupper, Influence of EDM conditions on the toughness of tool steels, Thyssen Edelstahl Technische Berichte (1990) 100–105.
42. M. Kunieda, S. Furuoya, Improvement of EDM efficiency by supplying oxygen gas into gap, Annals of the CIRP 40 (1991) 215–218.
43. I. Ogata, Y. Mukoyama, Carburizing and decarburizing phenomena in EDM’d surface, International Journal of Japan Society Precision Engineering 27 (3) (1993) 197–202.
44. W. König, F. Klocke, M. Sparrer, EDM-sinking using water-based dielectrics and electropolishing – a new manufacturing sequence in tool-making, in: Proceedings of the 11th International Symposium on Electromachining (ISEM XI), Lausanne, Switzerland (1995) 225- 234.
45. J.P. Kruth, L. Stevens, L. Froyen, B. Lauwers, K.U. Leuven, Study of the white layer of a surface machined by die-sinking electro-discharge machining, Annals of the CIRP 44 (1995) 169–172.
46. M. Kunieda, M. Yoshida, Electrical discharge machining in gas, Annals of the CIRP 46 (1997) 143–146.
47. R. Dewes, D. Aspinwall, J. Burrows, M. Paul, F. El-Menshawy, High speed machining-multi-function/hybrid systems, in: Proceedings of the Fourth International Conference on Industrial Tooling, Southampton, UK (2001) 91–100.
48. Q.H. Zhang, J.H. Zhang, J.X. Deng, Y. Qin, Z.W. Niu, Ultrasonic vibration electrical discharge machining in gas, Journal Materials Processing Technology 129 (2002) 135-138.
49. M.L. Jeswani, Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining, Wear 70 (1981) 133-139.
50. H. Narumiya, N. Mohri, N. Saito, H. Ohtake, Y. Tsunekawa, T. Takawashi, K. Kobayashi, EDM by powder suspended working fluid, Proceedings of International symposium for Electro-Machining, The Japan Society of Electrical-Machining Engineers (1989) 5- 8.
51. B.H. Yan, S.L. Chen, Effect of dielectric with suspended aluminum powder on EDM, Journal Chinese Society of Mechanical Engineers (1993) 307-312.
52. B.H. Yan, S.L. Chen, Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with aluminum powder, Journal of the Japan Institute of Metals, 58 (9) (1994) 1067-1072.
53. Q.Y. Ming, L.Y. He, Powder-suspension dielectric fluid for EDM, Journal of Materials Processing Technology 52 (1995) 44-54.
54. Y.S. Wong, L.C. Lim, W.M. Tee, Near-mirror-finish phenomenon in EDM using powder-mixed, Journal of Materials Processing Technology 79 (1998) 30-40.
55. Y.F. Tzeng, C.Y. Lee, Effect of powder characteristics on electrodischarge machining, International Journal of Advanced Manufacturing Technology 7 (2001) 586-592.
56. B.H. Yan Y.C. Lin, F.Y. Huang, C.H. Wang, Surface modification of SKD 61 during EDM with metal powder in the dielectric, Materials Transactions, JIM 42 (12) (2001) 2597-2604.
57. K. Furutani, A. Saneto, H. Takezawa, N. Mohri, H. Miyake, Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid, Journal of the International Societies for Precision Engineering and Nanotechnology 25 (2001) 138–144.
58. W.S. Zhao, Q.G. Meng, Z.L. Wang, The application of research on powder mixed EDM in rough machining, Journal of Materials Processing Technology 129 (2002) 30-33.
59. P. Pecas, E. Henriques, Influence of silicon powder-mixed dielectric on conventional electrical discharge machining, International Journal of Machine Tools & Manufacture 43 (2003) 1465–1471.
60. F. Klocke, D. Lung, G. Antonoglou, D. Thomaidis, The effects of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies, Journal of Materials Processing Technology 149 (2004) 191–197.
61. N. Mohri, N. Saito, M. Suzuki, T. Takawashi, K. Kobayashi, Surface modification by EDM - an innovation in EDM with semi-conductive electrodes, American Society of Mechanical Engineers, Production Engineering Division (Publication) PED 34 (1988) 21-30.
62. A. Gangadhur, M.S. Shunmugam, P.K. Philip, Surface modification in electrodischarge processing with a powder compact tool electrode, Wear 143 (1991) 45–55.
63. N. Mohri, N. Saito, Y. Tsunekawa, N. Kinoshita, Metal surface modification by electrical discharge machining with composite electrode, Annals of the CIRP 42 (1) (1993) 219–222.
64. Y. Fukuzawa, Y. Kojima, E. Sekiguti, N. Mohri, Surface modification of stainless steel by electrical discharge machining, The Iron and Steel Institute of Japan International 33 (9) (1993) 996-1002.
65. Y. Fukuzawa, Y. Kojima, T. Tani, E. Sekiguti, N. Mohri, Fabrication of surface modification layer on stainless steel by electrical discharge machining, Materials and Manufacturing Processes 10 (2) (1995) 195–203.
66. J.S. Soni, G. Ghakraverti, Experiment investigation on migration of material during EDM of die steel (T215 Cr12), Journal of Materials Processing Technology 56 (1996) 439-451.
67. Y. Tsunekawa, M. Okumiya, N. Mohri, E. Kuribe, Formation of composite layer containing TiC precipitates by electrical discharge alloying, Materials Transactions, JIM 38 (7) (1997) 630–635.
68. M.P. Samuel, P.K. Philip, Powder metallurgy electrodes for electrical discharge machining, International Journal of Machine Tools & Manufacture 37 (11) (1997) 1625–1633.
69. D.I. Pantelis, N.M. Vaxevanidis, A.E. Houndri, P. Dumas, M. Jeandin, Investigation into the application of electrodischarge machining as steel surface modification technique, Surface Engineering 14 (1) (1998) 55–61.
70. L. Li, Y.S. Wong, J.Y.H. Fuh, L. Lu, Formation of a new EDM electrode material use sintering techniques, Journal of Materials Processing Technology 89-90 (1999) 182-199.
71. Y.C. Lin, B. H. Yan, F. Y. Huang, Surface modification of Al-Zn-Mg aluminum alloy using combined process of EDM with USM, Journal of Materials Processing Technology 115 (2001) 359-366.
72. L. Li, Y.S. Wong, J.Y.H. Fuh, L. Lu, Effect of TiC copper-tungsten electrodes on EDM performance, Journal of Materials Processing Technology 113 (2001) 563-567.
73. B. Nowicki, R. Pierzynowski, S. Spadło, New possibilities of machining and electrodischarge alloying of free-form surfaces, Journal of Materials Processing Technology 109 (2001) 371-376.
74. Z.L. Wang, Y. Fang, P.N. Wu, W.S. Zhao, K. Cheng, Surface modification process by electrical discharge machining with Ti powder green compact electrode, Journal of Materials Processing Technology 129 (2002) 139-142.
75. J. Simao, H.G. Lee, D.K. Aspinwall, R.C. Dewes, E.M. Aspinwall, Workpiece surface modification using electrical discharge machining, International Journal of Machine Tools & Manufacture 43 (2003) 121–128.
76. D.K. Aspinwall, R.C. Dewes, H.G. Lee, J. Simao, Electrical discharge machining surface alloying of Ti and Fe workpiece materials using refractory powder compact electrodes and Cu wire, Annals of the CIRP 52(1) (2003) 151–156.
77. T. Moro, N. Mohri, H. Otsubo, A. Goto, N. Saito, Study on the surface modification system with electrical discharge machine in the practical usage, Journal of Materials Processing Technology 149 (2004) 65–70.
第二章
1. N. Mohri, N. Saito, Y. Tsunekawa, Metal surface modification by electrical discharge machining with composite electrode, Annals of the CIRP 42 (1993) 219–222.
2. A. Gangadhar, M.S. Shunmugam, P.K. Philip, Surface modification in electrodischarge processing with a powder compact tool electrode, Wear 143 (1991) 45–55.
3. D.I. Pantelis, N.M. Vaxevanidis, A.E. Houndri, P. Dumas, M. Jeandin, Investigation into application of electrodischarge machining as steel Surface modification technique, Surface Engineering 14 (1) (1998) 55–61.
4. A. Arthur, P.M. Dickens, R.C. Cob, Using rapid prototyping to produce electrical discharge machining electrode, Rapid Prototyping Journal 2 (1) (1996) 4–12.
5. Y. Tsuekawa, M. Okumiya, N. Mohri, Surface modification of aluminum by electrical discharge alloying, Materials Science and Engineering A174 (1994) 193–198.
6. M.P. Samuel, P.K. Philip, Power metallurgy tool electrode for electrical discharge machining, International Journal of Machine Tools & Manufacture 37 (11) (1997) 1625–1633.
7. Y.F. Luo, An evaluation of spark mobility in electrical discharge machining, IEEE Transaction on Plasma Science 26 (3) (1998) 1010–1016.
8. O.A. Abu Zeid, On the effect of electrodischarge machined parameters on the fatigue life of AISI D6 tool steel, Journal of Materials Processing Technology 68 (1997) 27–32.
9. Y. Fukuzawa, Y. Kojima, T. Tani, E. Sekiguti, N. Mohri, Fabrication of surface modification layer on stainless steel by electrical discharge machining, Materials and Manufacture Processes 10 (2) (1995) 195–203.
10. Y. Tsunekawa, M. Okumiya, N. Mohri, E. Kuribe, Formation of composite layer containing TiC precipitates by electrical discharge alloying, Materials Transactions, JIM 38 (7) (1997) 630–635.
11. L.C. Lee, L.C. Lim, V. Narayanan, V.C. Venkatesh, Quantification of surface damage of tool steels after EDM, International Journal of Machine Tools & Manufacture 28 (4) (1988) 359–372.
12. L.C. Lee, L.C Lim, Y.S. Wong, Crack susceptibility of electrodischarge machined surfaces, Journal of Materials Processing Technology 29 (1992) 213–221.
13. Q.Y. Ming, L.Y. He, Powder-suspension dielectric fluid for EDM, Journal of Materials Processing Technology 52 (1995) 44–54.
14. B.H. Yan, Y.C. Lin, F.Y. Huang, C.H. Wang, Surface modification of SKD 61 during EDM with metal powder in the dielectric, Materials Transactions 42 (12) (2001) 2597–2604.
15. G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, R. Flükiger, Microstructure at submicron scale of the white layer produced by EDM technique, Journal of Materials Processing Technology 149 (2004) 289–295.
16. L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu, Solidification microstructure of electrodischarge machined surfaces of tool steels, Materials Science Technology 7 (3) (1991) 239–248.
第三章
1. K.E. Budinski, Tribological properties of titanium alloys, Wear 151 (1991) 203-217.
2. M.S. Shunmugam, P. K. Philip, Improvement of Wear Resistance by EDM with Tungsten Carbide P/M Electrode, Wear 171 (1994) 1-5.
3. N. Mohri, N. Saito, Y. Tsunekawa, Metal Surface Modification by Electrical Discharge Machining with Composite Electrode, Annals of the CIRP 42 (1993) 219-222.
4. J. Simao, H.G. Lee, D.K. Aspinwall, R.C. Dewes, E.M. Aspinwall, Workpiece surface modification using electrical discharge machining, International Journal of Machine Tools & Manufacture 43 (2003) 121–128.
5. K. Furutani, A. Saneto, H. Takezawa, N. Mohri, H. Miyake, Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid Precision Engineering, Journal of the International Societies for Precision Engineering and Nanotechnology 25 (2001) 138–144.
6. B.H. Yan Y.C. Lin, F.Y. Huan C.H. Wang, Surface modification of SKD 61 during EDM with Metal powder in the dielectric, Materials Transactions, JIM 42 (12) (2001) 2597-2604.
7. S.L. Chen, B.H. Yan, F.Y. Huang, Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti-6Al-4V, Journal of Materials Processes Technology 87 (1999) 107-111.
8. S. Podsiadlo, Stages synthesis of gallium nitride with the use of urea, Thermochimica acta 256 (1995) 367-373.
9. M. R. Shen, Q. A. Xu, Amorphous carbon nitride thin films deposited by electrolysis of methanol and urea organic solutions, Journal of Materials Science Letters18 (1999) 317-319.
10. D.D. DiBitonto, P.T. Eubank, M.A. Barrufet, Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model, Journal of Applied Physics 66 (9) (1989) 4095-4103.
11. M.R. Patel, M.A. Barrufet, P.T. Eubank, D.D. DiBitonto, Theoretical models of the electrical discharge machining process. II. The anode erosion model, Journal of Applied Physics 66 (9) (1989) 4101-4111.
12. M. Toren, Y. Zvirin, Y. Winograd, Melting and evaporation phenomena during electrical erosion, Journal of Heat Transfer (1989) 576-581.
13. Y. Tsuekawa, M. Okumiya, N. Mohri, E. Kuribe, Formation of composite layer containing TiC precipitates by electrical discharge alloying, Materials Transactions, Japan Institute of Metals 38(7) (1997) 630-635.
14. P.A. Molian. L. Hualun, Laser cladding of Ti-6AI-4V with BN for improved wear performance, Wear 130 (1989) 337-353.
15. Y. Fu, A.W. Batchelor, Laser nitriding of pure titanium with Ni, Cr for improved wear performance, Wear 214 (1998) 83-90.
16. D.I. Pantelis, N.M. Vaxevanidis, A.E. Houndri, P. Dumas, M. Jeandin, Investigation into the application of electrodischarge machining as steel surface modification technique, Surface Engineering 14 (1) (1998) 55–61.
第四章
1. M.L. Jeswani, Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge, Wear 70 (1981) 133-139.
2. H. Narumiya, N. Mohri, N. Saito, H. Ohtake, Y. Tsunekawa, T. Takawashi, K. Kobayashi, EDM by powder suspended working fluid, Proceedings of International symposium for Electro-Machining, The Japan Society of Electrical-Machining Engineers (1989) 5-8.
3. B.H. Yan, S.L. Chen, Effect of dielectric with suspended aluminum powder on EDM, Journal Chinese Society of Mechanical Engineers (1993) 307-312.
4. Q.Y. Ming, L.Y. He, Powder-suspension dielectric Fluid for EDM, Journal of Materials Processing Technology 52 (1995) 44-54.
5. Y.F. Tzeng, C.Y. Lee, Effect of powder characteristics on electrodischarge machining, International Journal of Advanced Manufacturing Technology 7 (2001) 586-592.
6. W.S. Zhao, Q.G. Meng, Z.L. Wang, The application of research on powder mixed EDM in rough machining, Journal of Materials Processing Technology 129 (2002) 30-33.
7. F. Klocke, D. Lung, G. Antonoglou, D. Thomaidis, The effects of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies, Journal of Materials Processing Technology 149 (2004) 191–197.
8. B.H. Yan and S.L. Chen, Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with aluminum powder, Journal Japan Inst. Metals 58 (9) (1994) 1067-1072.
9. Y.S. Wong, L.C. Lim, W.M. Tee, Near-mirror-finish phenomenon in EDM using powder-mixed, Journal of Materials Processing Technology 79 (1998) 30-40.
10. P. Pecas, E. Henriques, Influence of silicon powder-mixed dielectric on conventional electrical discharge machining, International Journal of Machine Tools & Manufacture 43 (2003) 1465–1471.
11. B.H. Yan Y.C. Lin, F.Y. Huan C.H. Wang, Surface modification of SKD 61 during EDM with Metal powder in the dielectric, Materials Transactions, JIM 42 (12) (2001) 2597-2604.
12. K. Furutani, A. Saneto, H. Takezawa, N. Mohri, H. Miyake, Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid Precision Engineering, Journal of the International Societies for Precision Engineering and Nanotechnology 25 (2001) 138–144.
13. D.D. DiBitonto, P.T. Eubank, M.A. Barrufet, Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model, Journal of Applied Physics 66 (9) (1989) 4095-4103.
14. M.R. Patel, M.A. Barrufet, P.T. Eubank, D.D. DiBitonto, Theoretical models of the electrical discharge machining process. II. The anode erosion model, Journal of Applied Physics 66 (9) (1989) 4101-4111.
15. M. Toren, Y. Zvirin, Y. Winograd, Melting and evaporation phenomena during electrical erosion, Journal of Heat Transfer (1989) 576-581.
16. L.C. Lee, L.C. Lim, Y.S. Wong, Crack susceptibility of electro-discharge machined surfaces, Journal of Materials Processing Technology 29 (1992) 213-221.
17. H.T. Lee, T.Y. Tai, Relationship between EDM parameters and surface crack formation, Journal of Materials Processing Technology 142 (2003) 676–683.
18. Y. Tsuekawa, M. Okumiya, N. Mohri, E. Kuribe, Formation of composite layer containing TiC precipitates by electrical discharge alloying, Materials Transactions, JIM 38 (7) (1997) 630-635.
19. R.J. Good, Adsorption at interfaces, in: K.L. Mittal (Ed.), ACS Symposium Series No. 8, American Chemical Society, Washington, DC, (1975).
20. L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, C. Martelet, Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour, Materials Science and Engineering C 23 (2003) 551–560.
21. E. Lugscheider, K. Bobzin, The influence on surface free energy of PVD-coatings, Surface and Coatings Technology 142-144 (2001) 755-760.
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2005-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明