博碩士論文 89323035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.147.89.50
姓名 莊雅傑(Ya-Chieh Chuang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Cu/Mg比與熱處理對Al-Cu-Mg-Ag合金應力腐蝕性之影響
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
Al-Cu-Mg-Ag合金為一高強度鋁合金,隨著Cu/Mg比由大到小,強化機制由Ω及θ’相並重至Ω相為主要強化相,且當施行不同熱處理,晶界析出形態也跟著改變,應力腐蝕破裂是Al-Cu-Mg-Ag合金破裂的重要原因之一,其破壞性會隨著析出形態而改變,故本研究探討主題為Cu/Mg比與熱處理對Al-Cu-Mg-Ag合金應力腐蝕破裂之影響。
本研究設計不同Cu/Mg比(Cu/Mg重量比=4、8、19、29)之四種合金,施以不同的時效熱處理(T4、T6、T7、RRA),探討在應力腐蝕環境之下,各種時效熱處理條件對應力腐蝕敏感性的影響。利用光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、微差掃描熱分析儀(DSC)、導電度(%IACS)、硬度試驗、拉伸試驗(Tensile Test)與慢應變速率試驗(SSRT)等方法,探討微結構的變化與材料機械性質與抗應力腐蝕敏感性之關係。再根據實驗結果,尋求一兼具高強度與高抗應力腐蝕破壞Al-Cu-Mg-Ag鋁合金的製造方法及合金成份設計。
由結果可知,Cu/Mg重量比=8、19在進行T6、T7與RRA時效熱處理後均擁有高強度,但其中以Cu/Mg重量比=19實施T7時效熱處理之抗應力腐蝕最為顯著;顯示出Mg含量越多,雖然使析出相分布更為細密,卻也造成晶界處陽極溶解效應越趨嚴重;而T7熱處理,晶界析出物粗大且不連續,也使得抗應力腐蝕破裂效果較T6、RRA佳。
關鍵字(中) ★ 熱處理
★ 應力腐蝕破裂
關鍵字(英) ★ stress corroson crack
★ Al-Cu-Mg-Ag
論文目次 總目錄
摘要.......................................................I
謝誌......................................................II
總目錄...................................................III
圖目錄.....................................................V
表目錄...................................................VII
一、前言...................................................1
1.1 Al-Cu-Mg-Ag合金簡介...................................1
1.2 Al-Cu-Mg-Ag合金之析出強化相...........................2
1.3 Cu/Mg比對Al-Cu-Mg-Ag合金析出強化相之影響..............3
1.4 應力腐蝕簡介..........................................3
1.5 Al-Cu-Mg-Ag合金之腐蝕形態.............................7
1.6 時效處理對抗應力腐蝕破裂之影響........................9
1.7 慢速率應變試驗法(Slow Strain Rate Test, SSRT).........9
二、實驗步驟與方法........................................12
2.1 合金配製之擠製及熱處理...............................12
2.2 微結構分析...........................................14
2.2.1 OM金相觀察及EPMA分析...............................14
2.2.2 掃瞄式電子顯微鏡(SEM)..............................14
2.2.3 穿透式電子顯微鏡(TEM)..............................14
2.2.4 微差掃瞄熱分析儀(DSC)..............................15
2.2.5 導電度(%IACS)......................................15
2.3 機械性質分析.........................................15
2.3.1 硬度試驗...........................................15
2.3.2 拉伸試驗...........................................15
三、結果與討論............................................17
3.1 微結構分析...........................................17
3.1.1 金相觀察...........................................17
3.1.2 導電度量測(%IACS)..................................17
3.1.3 微分掃瞄熱分析(DSC)................................24
3.1.4 TEM分析............................................28
3.2 機械性質與應力腐蝕分析...............................34
3.2.1 硬度量測...........................................34
3.2.2 拉伸試驗...........................................38
3.2.3 應力腐蝕試驗.......................................38
3.3 綜合分析.............................................45
四、結論..................................................48
五、未來研究方向..........................................50
六、參考資料..............................................51
參考文獻 六、參考資料
1. S. P. Ringer, K. Hono, T. Sakurai, I. J. Polmear, “ Cluster Hardening in an Aged Al-Cu-Mg Alloy ” , Scripta Materialia, Vol.36, No.5, (1997), pp.517-521
2. J. Raffin, US Patent No.3475166, Oct.26, (1969)
3. I. J. Polmear, M. J. Couper, “ Design and Development of an Experimental Wrought Aluminum Alloy for Use at Elevated Temperatures ” , Metallurgical Transactions A, Vol.19A, (1988), pp. 1027-1035
4. I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E. Borbidge, S. Roger, “ After Concorde: Evaluation of Creep Resistant Al-Cu-Mg-Ag Alloys ” , Materials Science and Technology, Vol.15, (1999), pp.861-868
5. B. C. Muddle, I. J. Polmear, “ The Precipctate Ω Phase in Al-Cu-Mg-Ag Alloys ” , Acta metal., Vol.37, No.3, (1989), pp.777-789
6. K. M. Knowles, W. M. Stobbs, “ The Structure of {111} Age- Hardening Precipitates in Al-Cu-Mg-Ag Alloys ” , Acta Cryst., B44, (1988), pp.207-227
7. A. Garg, J. M. Howe, “ Convergent-Beam Electron Diffraction Analysis of the Ω Phase in an Al-4.0Cu-0.5Mg-0.5Ag Alloy ” , Acta metal. mater., Vol.39, No.8, (1991), pp.1939-1946
8. R. J. Chester, I. J. Polmear, “ TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys ” , Micron, Vol.11, (1980), pp. 311-312
9. S. P. Ringer, W. Yeung, B. C. Muddle, I. J. Polmear, “ Precipitate Stability in Al-Cu-Mg-Ag Alloys Aged at High Temperatures ” , Acta metal. mater., Vol.42, No.5, (1994), pp.1715-1725
10. K. Hono, N. Sano, S. S. Babu, R. Okano, T. Sakurai, “ Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys ” , Acta metal. mater., Vol.41, No.3, (1993), pp.829-838
11. R. K. Wyss, R. E. Sanders, “ Microstructure-Property Relationship in a 2xxx Aluminum Alloy with Addition ” , Metallurgical Transactions A, Vol.19A, (1988), pp.2523-2530
12. M. Takeda, Y. Maeda, A. Yoshida, K. Yabuta, S. Konuma, T. Endo, “ Discontinuity of G.P.(I) Zone and θ”-Phase in an Al-Cu Alloy ” , Scripta Materialia, Vol.41, No.6, (1999), pp.643-649
13. 張志鴻, “ 銀含量對於A201鑄造鋁合金Ω相析出影響 ” , 國立中央大學機械工程研究所碩士論文, (2000)
14. K. Hono, T. Sakurai, I. J. Polmear, “ Pre-Precipitate Clustering in an Al-Cu-Mg-Ag Alloy ” , Scripta Metallurgica et Materialia, Vol.30, No.6, (1994), pp.695-700
15. A. K. Mukhopadhyay, “ Nucleation of Ω Phase in an Al-Cu-Mg Alloy Containing Small Addition of Ag ” , Materials Transactions, JIM, Vol.38, No.5, (1997), pp.478-482
16. A. Garg, Y. C. Chang, J. M. Howe, “ Precipitation of the Ω Phase in an Al-4.0Cu-0.5Mg Alloy ” , Scripta Metallurgica et Materialia, Vol.24, (1990), pp.677-680
17. L. Reich, M. Murayama, K. Hono, “ Evolution of Ω Phase in an Al-Cu-Mg-Ag Alloy-A Three-Dimension Atom Probe Study ” , Acta mater., Vol.46, No.17, (1998), pp.6053-6052
18. L. D. Castillo, E. J. Lavernia, “ Microstructure and Mechanical Behavior of Spray-Deposited Al-Cu-Mg(-Ag-Mn) Alloys ” , Metallurgical and Materials Transactions A, Vol.31A, (2000), pp. 2287-2298
19. O. Beffort, C. Solenthaler, P. J. Uggowitzer, M. O. Speidel, “ High Toughness and High Strength Spray-Deposited AlCuMgAg-Base Alloys for Use at Moderately Elevated Temperatures ” , Materials Science & Engineering A191, (1995), pp.121-134
20. D. A. Jones, “ Principles and Prevention of Corrosion 2nd ed. ” , Prentice Hall International, Inc., (1997), pp.235-244
21. 柯賢文, “ 腐蝕及其防治 ” , 全華科技圖書股份有限公司, (1995), pp.167-181
22. 蔡騰群, “ 超塑性7475鋁鋅鎂合金應力腐蝕性質研究 ” , 國立台灣大學材料科學與工程學研究所博士論文, (1996)
23. A. J. Sedriks, J. A. S. Green, D. L. Novak, “ On the Chemistry of the Solution at tips of Stress Corrosion Cracks in Al Alloys ”, Corrosion-Nace, Vol.27, No.5, (1971), pp.198-202
24. T. D. Burleigh, “ The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys “ , Corrosion, vol.47, (1991), pp.89-98
25. M. S. Misra, K. J. Oswalt, “ Corrosion Behavior of Al-Cu-Ag(201) Alloy ” , Metals Engineering Quarterly, (1976), pp.39-44
26. M. O. Speidel, M. V. Hyatt, “ Advances in Corrosion Science and Technology “ , Vol.2, (1972), pp.224-243
27. M. O. Speidel, “ Stress Corrosion Cracking of Aluminum Alloys ” , Metallurgical Transactions A, (1975), pp.631-651
28. H. F. de Jong, “ Evaluation of the Constant Strain Test Method for Testing Stress Corrosion Cracking in Aluminum Alloys ” , Corrosion-Nace, Vol.34, No.1, (1978), pp.32-36
29. R. N. Parkins, F. Mazza, J. J. Royuela, J. C. Scully, “ Stress Corrosion Test Methods ” , Br. Corros. J., Vol.7, (1972), pp.154-167
30. K. Rajan, W. Wallace, J. Beddoes, “ Microstructural Study of a High-Strength Stress-Corrosion Resistant 7075 Aluminum Alloy ” , Journal of Materials Science, Vol.17, (1982), pp.2817-2824
31. ASTM B597-83, Annual Book of ASTM Standards, Vol.02.02, (1984)
32. ASTM B557M-81, Annual Book of ASTM Standards, Vol.03.01, (1991)
33. A. K. Mukhopadhyay, “ On the Nature of the Second Phase Particles Present in an As-Cast Al-Cu-Mg-Ag Alloy ” , Scripta Materialia, Vol.41, (1999), pp.667-672
34. A. K. Mukhopadhyay, “ Compositional Characterization of Cu-Rich Phase Particles Present in As-Cast Al-Cu-Mg(-Li) Alloys Containing Ag ” , Metallurgical and Materials Transactions A, Vol.30A, (1999), pp.1693-1704
35. 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, “ 工程材料科學 ” , 全華科技圖書股份有限公司, (1999), pp.399-432
36. J. E. Hatch, “ Aluminum Properties and Physical Metallurgy ” , American Society for Metals, Metals Park, Ohio, (1984), pp.175-177
37. 吳典黻, “ Fe含量對A206鑄造鋁合金機械性質之影響 ” , 國立中央大學機械工程研究所碩士論文, (1997)
38. O. Beffort, C. Solenthaler, M. O. Speidel, “ Improvement of Strength and Fracture Toughness of a Spray-Deposited Al -Cu-Mg-Ag-Mn-Ti-Zr Alloy by Optimize Heat Treaments and Thermomechanical Treatments ” , Materials Science & Engineering A191, (1995), pp.113-120
39. D. A. Jones, “ Principles and Prevention of Corrosion 2nd ed. ” , Prentice Hall International, Inc., (1997), pp.168-198
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2002-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明