博碩士論文 89323046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.133.156.156
姓名 王景輝(Jing-Hui Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋁/鈣/錳元素對於鎂合金燃燒性質的影響
(The Difference of The Ignition Temperatures Affected by Adding Elements, Al、Ca、Mn, into Magnesium Alloys)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究主要是探討在加熱過程中,不同元素對於鎂合金發生燃燒反應的溫度的影響。使用的實驗材料為商用鎂鋁合金(純鎂、AZ61A、AZ80A和AZ91D)以及自行熔煉的鎂鈣與鎂鋁錳合金。另外,利用自行設計的加熱測溫裝置,比較鋁、鈣、錳等三種元素,對於抑制鎂合金燃燒的效果。
實驗結果發現鎂鋁合金發生燃燒反應的溫度,會隨著合金中鋁含量的增加而降低,主要是因為合金基地中的鎂鋁低熔點共晶物的含量會隨著鋁的添加量增加而增加,使合金容易發生局部熔解的情形,進而破壞合金表面原本的保護層,導致燃燒。
而添加鈣到鎂合金中,則是添加量愈多,發生燃燒反應的溫度愈高,主要原因是鈣會形成一層緻密的氧化層,阻止合金中的鎂元素與空氣中的氧做進一步的接觸。
鎂鋁錳合金中,錳含量增加也會提高合金發生燃燒反應的溫度,因為錳含量提高會消耗合金基地中更多的鋁元素,以形成Al6Mn析出物,所以合金中的低熔點鎂鋁共晶物的量會因此而減少,導致合金發生燃燒反應的溫度有提高的現象。
摘要(英) Abstract
The purpose of this study is aimed at investigating the difference of the ignition temperatures affected by adding elements, Al、Ca、Mn, into magnesium alloys. The alloys used in this experiment are commercial Mg-Al alloys ( pure magnesium, AZ61A, AZ80A, AZ91D ) and Mg-Ca、Mg-Al-Mn alloys melted by designed apparatus.
Experimental results show that adding more aluminum into magnesium alloys would lower the ignition temperature of the alloys. Inversely, adding more calcium and manganese into magnesium alloys would raise the ignition temperatures. Aluminum added into magnesium alloys would form low melting point eutectics, leading to local melt and therefore lowering the ignition temperature. Eventually, the specimens would burn out during experiment.
However, adding calcium into magnesium alloys would retard the ignition process by forming thin and dense CaO films on the surface of the alloys.
In the Mg-Al-Mn alloys, increasing manganese content increase the ignition temperature due to a great percent of precipitate, Al6Mn, formed leading to decrease amount of low melting point eutectics. So adding manganese would increase the ignition temperature of the magnesium alloys.
關鍵字(中) ★ 鎂鋁合金
★ 鎂鈣合金
★ 鎂鋁錳合金
★ 燃燒
關鍵字(英) ★ Ignition
★ Mg-Al-Mn alloy
★ Mg-Ca alloy
★ Mg-Al alloy
論文目次 總目錄
中文摘要
英文摘要
總目錄-------------------------------------------------------------------------i
表目錄-----------------------------------------------------------------------iii
圖目錄------------------------------------------------------------------------iv
第一章 前言--------------------------------------------------------------------1
第二章 文獻回顧----------------------------------------------------------------2
2-1 鎂與鎂合金的基本特性-------------------------------------------------------2
2-1-1 鎂-----------------------------------------------------------------------2
2-2-2 鎂合金-------------------------------------------------------------------2
2-2 鎂合金的熔煉與安全防護-----------------------------------------------------5
2-2-1 熔煉流程-----------------------------------------------------------------6
2-2-2 熔煉設備-----------------------------------------------------------------6
2-2-3 助熔劑及保護氣體---------------------------------------------------------7
2-2-4 其他注意事項------------------------------------------------------------12
2-3 鎂與鎂合金的燃燒特性與機制------------------------------------------------13
2-3-1 純鎂--------------------------------------------------------------------14
2-3-2 鎂鋁鋅合金--------------------------------------------------------------16
2-3-3 鎂鈣合金----------------------------------------------------------------17
2-4 鎂合金的回收概況----------------------------------------------------------19
第三章 實驗步驟---------------------------------------------------------------22
3-1 實驗目的------------------------------------------------------------------22
3-2 實驗材料------------------------------------------------------------------22
3-2-1 商用鎂鋁鋅合金----------------------------------------------------------22
3-2-2 鎂鈣合金----------------------------------------------------------------22
3-2-3 鎂鋁錳合金--------------------------------------------------------------24
3-3 試片規格------------------------------------------------------------------24
3-4 實驗設備------------------------------------------------------------------24
3-5 實驗步驟與方法------------------------------------------------------------25
第四章 結果與討論-------------------------------------------------------------27
4-1 實驗設備理論基礎----------------------------------------------------------27
4-2 鎂鋁鋅合金的分析結果------------------------------------------------------27
4-2-1 實驗現象觀察------------------------------------------------------------27
4-2-2 由熱量分析來討論燃燒結果------------------------------------------------29
4-3 鎂鈣合金的分析結果--------------------------------------------------------32
4-3-1實驗現象觀察-------------------------------------------------------------32
4-3-2由熱量分析來討論燃燒結果-------------------------------------------------33
4-4鎂鋁錳合金的分析結果-------------------------------------------------------36
4-4-1 實驗現象觀察------------------------------------------------------------36
4-4-2 由熱量分析來討論燃燒結果------------------------------------------------36
4-5 綜合討論------------------------------------------------------------------39
第五章 結論-------------------------------------------------------------------40
參考文獻----------------------------------------------------------------------41
附錄1 實驗設備吸收的熱量------------------------------------------------------94
附錄2 未經固溶處理的鎂鋁合金之氧化過程示意圖----------------------------------95
附錄3 經固溶處理後的鎂鋁合金之氧化過程示意圖----------------------------------96
附錄4 鈣含量較高的鎂鈣合金之氧化過程示意圖------------------------------------97
附錄5 鈣含量較低的鎂鈣合金之氧化過程示意圖------------------------------------98
附錄6 鎂鋁錳合金之氧化過程示意圖----------------------------------------------99
表目錄
Chap. 2
Table 2-1 鎂元素來自礦物中的比例[1]-------------------------------------------45
Table 2-2 鎂的物理特性[2]-----------------------------------------------------45
Table 2-3 鎂合金的成份比例[3]-------------------------------------------------46
Table 2-4 鎂合金助熔劑之比較[25]----------------------------------------------46
Table 2-5 IMA建議的保護氣氛組成[24]-------------------------------------------47
Table 2-6 鎂合金加工用礦物性切削液基本性質[24]--------------------------------47
Table 2-7 鎂燃燒時的滅火劑種類[24]--------------------------------------------47
Chap. 3
Table 3-1 商用鎂鋁鋅合金之成份------------------------------------------------48
Table 3-2 鎂鈣合金之成份------------------------------------------------------48
Table 3-3 鎂鋁錳合金之成份----------------------------------------------------48
Chap. 4
Table 4-1 AZ80A和AZ91D的固溶處理條件[36] -------------------------------------49
Table 4-2 參與反應的鋁元素佔試片中鋁含量的重量比率----------------------------49
Table 4-3 鎂鋁錳合金中共晶物與析出物所佔之面積率------------------------------49
圖目錄
Chap. 2
Fig. 2-1 Scheme of a production line with a protective atmosphere containing SF6 and a turbulent filling of the shot chamber[28]---------------------------50
Fig. 2-2 Scheme of the total encapsulated melting and casting process with a SF6-free argon-atmosphere and laminar filling of the shot-chamber up to 100%[28] -------------------------------------------------------------------------50
Fig. 2-3 Conductive melting and dosing furnace for magnesium alloys with a controlled gas pressure dosing system[28]-------------------------------------51
Fig. 2-4 Time variation of sample temperature and continuous emission intensity. Magnesium sample[29]-----------------------------------------------51
Fig. 2-5 Direct photograph of sample appearance. Magnesium sample[29]---------52
Fig. 2-6 Emission spectrum of magnesium flame with identified characteristic lines and bandheads[29]-------------------------------------------------------52
Fig. 2-7 Schematic representation of four stages in surface oxidation.[29]----53
Fig. 2-8 Schematic representation of transition to homogeneous reaction in open space.[29]--------------------------------------------------------------------54
Fig. 2-9 Section of an underburned magnesium sample.[32]----------------------55
Fig. 2-10 Atmospheric exposure testing of the molten Mg-5Ca alloy.[13]--------55
Fig. 2-11 (a) Temperature vs. thickness of the oxide film of the molten Mg-5Ca alloy exposed for 20 hours in air, (b) thickness of the oxide film vs. holding time of the molten Mg-5Ca alloy at 1273 K in air.[13]-------------------------56
Fig. 2-12 Scanning electron micrographs of the cross sections of the oxide film formed on the molten Mg-5Ca alloy exposed for 20 hrs in air at (a) 1123 K, (b) 1173 K, and (c) 1273 K. Capital “U” denotes the most upper zone of the oxide film.[13]---------------------------------------------------------------------57
Fig. 2-13 Surface morphologies of pure magnesium(a, b) and Mg-1.5Ca(c, d) alloy oxidized at 500℃ (a, c: low magnification, b, d: high magnification).[10]----58
Fig. 2-14 X-ray diffraction patterns of the oxide film formed on the molten Mg-5Ca alloy held for 1 hr at 1073 K in the air.[13]-----------------------------58
Fig. 2-15 AES depth profiles sputtered from the surface of pure Mg and Mg-Ca alloys oxidized at 440(a), 480(b) and 500℃(c) for 1 hr.[10]------------------59
Fig. 2-16 Model of the oxide film formed on the molten Ca-bearing Mg alloy[13] -------------------------------------------------------------------------------59
Fig. 2-17 坩堝爐精煉示意圖[34]------------------------------------------------60
Fig. 2-18 鹽床精煉法示意圖[34]------------------------------------------------60
Fig. 2-19 雙槽過濾法示意圖[34]------------------------------------------------61
Fig. 2-20 氣泡除渣法示意圖[34]------------------------------------------------61
Fig. 2-21 減壓過濾法示意圖[34]------------------------------------------------62
Fig. 2-22 真空蒸餾法示意圖[34]------------------------------------------------62
Chap. 3
Fig. 3-1 坩堝示意圖-----------------------------------------------------------63
Fig. 3-2 真空熔解爐實體圖-----------------------------------------------------64
Fig. 3-3 真空熔解爐示意圖-----------------------------------------------------64
Fig. 3-4 鑄塊外形-------------------------------------------------------------65
Fig. 3-5 燃燒測溫裝置實體圖---------------------------------------------------65
Fig. 3-6 燃燒測溫裝置示意圖---------------------------------------------------66
Chap. 4
Fig. 4-1 AZ61A試片在空氣中加熱的溫度曲線--------------------------------------67
Fig. 4-2 AZ61A試片加熱後的外觀------------------------------------------------67
Fig. 4-3 鎂鋁合金燃燒後的殘留物之X光繞射分析圖--------------------------------68
Fig. 4-4 純鎂試片在空氣中加熱的溫度曲線---------------------------------------68
Fig. 4-5 純鎂試片加熱後的外觀-------------------------------------------------69
Fig. 4-6 純鎂試片實驗後的殘留物-----------------------------------------------69
Fig. 4-7 AZ80A試片在空氣中加熱的溫度曲線--------------------------------------70
Fig. 4-8 AZ80A試片加熱後的外觀------------------------------------------------70
Fig. 4-9 AZ91D試片在空氣中加熱的溫度曲線--------------------------------------71
Fig. 4-10 AZ91D試片加熱後的外觀-----------------------------------------------71
Fig. 4-11 鎂鋁合金的熱焓改變量與溫度關係圖------------------------------------72
Fig. 4-12 鎂鋁二元相圖[35]----------------------------------------------------72
Fig. 4-13 AZ80A試片固溶處理前-------------------------------------------------73
Fig. 4-14 AZ80A試片固溶處理後-------------------------------------------------73
Fig. 4-15 AZ91D試片固溶處理前-------------------------------------------------74
Fig. 4-16 AZ91D試片固溶處理後-------------------------------------------------74
Fig. 4-17 固溶處理後鎂鋁合金的熱焓改變量與溫度關係圖--------------------------75
Fig. 4-18 經固溶處理的AZ91D試片加熱後的外觀-----------------------------------75
Fig. 4-19 Mg0.1Ca試片在空氣中加熱的溫度曲線-----------------------------------76
Fig. 4-20 Mg0.1Ca試片加熱後的外觀---------------------------------------------76
Fig. 4-21 Mg1Ca試片在空氣中加熱的溫度曲線-------------------------------------77
Fig. 4-22 Mg1Ca試片加熱後的外觀-----------------------------------------------77
Fig. 4-23 Mg3Ca試片在空氣中加熱的溫度曲線-------------------------------------78
Fig. 4-24 Mg3Ca試片加熱後的外觀-----------------------------------------------78
Fig. 4-25 Mg5Ca試片在空氣中加熱的溫度曲線-------------------------------------79
Fig. 4-26 Mg5Ca試片加熱後的外觀-----------------------------------------------79
Fig. 4-27 鎂鈣合金的熱焓改變量與溫度關係圖------------------------------------80
Fig. 4-28 鎂-鈣二元合金相圖[35]-----------------------------------------------80
Fig. 4-29 Mg5Ca合金的表面型態(在空氣氣氛下,773 K,7小時)-------------------81
Fig. 4-30 Mg5Ca合金的表面型態(在空氣氣氛下,773 K,7小時)-------------------81
Fig. 4-31 Mg1Ca合金的表面型態(在空氣氣氛下,773 K,7小時)-------------------82
Fig. 4-32 Mg1Ca合金的表面型態(在空氣氣氛下,773 K,7小時)-------------------82
Fig. 4-33 純鎂的表面型態(在空氣氣氛下,773 K,7小時)------------------------83
Fig. 4-34 純鎂的表面型態(在空氣氣氛下,773 K,7小時)------------------------83
Fig. 4-35 Mg6Al試片在空氣中加熱的溫度曲線-------------------------------------84
Fig. 4-36 Mg6Al試片加熱後的外觀-----------------------------------------------84
Fig. 4-37 Mg6Al0.1Mn試片在空氣中加熱的溫度曲線--------------------------------85
Fig. 4-38 Mg6Al0.1Mn試片加熱後的外觀------------------------------------------85
Fig. 4-39 Mg6Al0.5Mn試片在空氣中加熱的溫度曲線--------------------------------86
Fig. 4-40 Mg6Al0.5Mn試片加熱後的外觀------------------------------------------86
Fig. 4-41 Mg6Al1Mn試片在空氣中加熱的溫度曲線----------------------------------87
Fig. 4-42 Mg6Al1Mn試片加熱後的外觀--------------------------------------------87
Fig. 4-43 鎂鋁錳合金的熱焓改變量與溫度關係圖----------------------------------88
Fig. 4-44 Mg6Al1Mn試片鑄態----------------------------------------------------88
Fig. 4-45 Mg6Al0.5Mn試片鑄態--------------------------------------------------89
Fig. 4-46 Mg6Al0.1Mn試片鑄態--------------------------------------------------89
Fig. 4-47 Mg6Al試片鑄態-------------------------------------------------------90
Fig. 4-48 Mg6Al1Mn試片的SEM影像圖---------------------------------------------90
Fig. 4-49 鋁-錳二元合金相圖[35] ----------------------------------------------91
Fig. 4-50 固溶處理後鎂鋁錳合金的熱焓改變量與溫度關係圖------------------------91
Fig. 4-51 Mg6Al0.5Mn試片固溶處理後--------------------------------------------92
Fig. 4-52 Mg6Al0.1Mn試片固溶處理後--------------------------------------------92
Fig. 4-53 合金成份與產生燃燒反應溫度關係圖------------------------------------93
參考文獻 參考文獻
1. R. W. Stanely, M. Berube, C. Celike,〝The Magnola Process For Magnesium Production〞, North American Die Casting Association.
2. 黃聖杰,〝3C產業未來發展不可或缺的主角----鎂合金〞,工業材料,144期,87年12月,pp.73-75.
3. 蔡幸甫,〝鎂合金之市場概況〞,工業材料,144期,87年12月,pp.70-72.
4. ASM Handbook, vol. 2,〝Pure Metals〞, 1991.
5. ASM Handbook, vol. 2,〝Specific Metals and Alloys〞, 1991.
6. 馬永耀,〝金屬熔銲學〞,徐氏基金會出版,台北,pp.134-144.
7. 賴耿陽,〝非鐵金屬材料〞,復漢出版社,新竹,1998,pp174-191.
8. Si-Young Chang, Hiroyasu Tezuka and Akihiko Kamio,〝Mechanical Properties and Structure of Ignition-Proof Mg-Ca-Zr Alloys Produced by Squeeze Casting〞, Materials Transactions, JIM, vol.38, n.6, 1997, pp.526-535.
9. Hiroyuki Watanabe, Toshiji Mukai, Koichi Ishikawa, Mamoru Mabuchi, Kenji Higashi,〝Realization of High-strain-rate Superplasticity at Low Temperatures in a Mg-Zn-Zr Alloy〞, Materials Science and Engineering A, A307, 2001, pp. 119-128.
10. B.-S. You, W.-W. Park and I.-S. Chung,〝The Effect of Calcium Additions on The Oxidation Behavior In Magnesium Alloys〞, Scripta Materialia, vol.42, 2000, pp.1089-1094.
11. Michiru Sakamoto, Shigeru Akiyama, Tsuyoshi Hagio and Keisaku Ogi,〝Control of Oxidation Surface Film and Suppression of Ignition of Molten Mg-Ca Alloy by Ca Addition〞, Journal of Japan Foundry Engineering Society, vol.69, 1997, pp.227-233.
12. 曾小勤,王渠東,丁文江,〝鎂合金熔煉阻燃方法與進展〞,輕合金加工技術,vol.27, n.9, 1999, pp.5-8.
13. Michiru Sakamoto, Shigeru Akiyama, Tsuyoshi Hagio,〝Mechanism of Non-Combustibility And Ignition of Ca-bearing Mg Melt〞, Proceedings of Fifth Asian Foundry Congress, Sept. 23rd-25th, 1997, Nanjing, China, pp.380-389.
14. R. Ninomiya, T. Ojiro and K. Kubota,〝Improved Heat Resistance of Mg-Al Alloys By The Ca Addition〞, Acta Metallurgica Materialia, vol.43, n.2, 1995, pp.669-674.
15. Won-Wook Park, Bong-Sun You, Byoung-Gi Moon, Wan-Chul Kim,〝Micorstructural Change And Precipitation Hardening In Melt-Spun Mg-X-Ca Alloys〞, Science And Technology of Advanced Materials, vol.2, 2001, pp.73-78.
16. J. F. Nie and B. C. Muddle,〝Precipitation Hardening of Mg-Ca(-Zn) Alloys〞, Scripta Materialia, vol.37, n.10, 1997, pp.1475-1481.
17. P. Vostry, I. Stulikova, B. Smola, W. Riehemann and B. L. Mordike,〝Structure and Stability of Microcrystalline Mg-Ca Alloy〞, Materials Science And Engineering A, A137, 1991, pp.87-92.
18. Renu Agarwal, Jung Joong Lee, Hans Leo Lukas and Ferdinand Sommer,〝Calorimetric Measurments And Thermodynamic Optimization of The Ca-Mg System〞, Z Metallkd. vol.86, n.2, 1995, pp.103-108.
19. C. Shaw, W. M. Rainforth and H. Jones,〝Characteristics of Formation of Nanoscale αMg Dispersions In Glassy Melt-Spun Mg-Al-Ca Alloys〞, Scripta Materialia, vol.37, n.3, 1997, pp.311-314.
20. Petr Vostry, Ivana Stulikova, Bohumil Smola, Milada Samatova, Norbert Hort, Franz Martin and Knoop,〝Annealing Response of Gas Atomised and Hot Extruded Mg-Ca and Mg-Y-Nd Alloys〞, The Conference Magnesium Alloys and Their Applications, April 28-30, 1998, Wolfsburg, Germany, pp.569-574.
21. X. Q. Zeng, Q. D. Wang, Y. Z. Lu, W. J. Ding, C. Lu, Y. P. Zhu, C. Q. Zhai and X. P. Xu,〝Study on Ignition Proof Magnesium Alloy With Beryllium And Rare Earth Additions〞, Scripta Materialia, vol.43, 2000, pp.403-409.
22. Zeng Xiaoqin, Wang Qudong, Lu Yizhen, Zhu Yaning, Ding Wenjiang and Zhao Yunhu,〝Influence of Beryllium And Rare Earth Additions on Ignition-Proof Magnesium Alloys〞, Journal Of Materials Processing Technology, vol.112, 2001, pp.17-23.
23. Yizhen Lu, Qudong Wang, Xiaoqin Zeng, Wenjiang Ding, Chunquan Zhai and Yanping Zhu,〝Effects of Rare Earths on The Microstructure, Properties And Fracture Behavior of Mg-Al Alloys〞, Materials Science And Engineering A, A278, 2000, pp.66-76.
24. 林景枎,〝鎂合金安全作業〞,工業材料,152期,88年8月,pp.110-122.
25. 郭永聖,〝鎂合金之鑄造實務〞,鑄工,57期,77年6月,pp.50-59.
26. 王建義,徐章銓,〝鎂合金之熔解、鑄造〞,鑄造月刊,137期,90年2月,pp.6-9.
27. 〝經濟部工業局88年度工業技術人才培訓計畫講義〞,金屬工業研究發展中心.
28. D. Kahn, P. R. Sahm, Giesserei-Institut RWTH Aachen, S. Kluge, H. H. Becker, Volkswagen AG Kassel, S. Carli, Volkswagen AG Wolfsburg,〝Innovative Manufacturing Technology For Melting And Casting Magnesium Alloys〞, The Conference Magnesium Alloys and Their Applications, April 28-30, 1998, Wolfsburg, Germany, pp.471-475.
29. Tadao Takeno and Saburo Yuasa,〝Ignition of Magnesium and Magnesium-Aluminum Alloy by Impinging Hot-Air Stream〞, Combustion Science and Technology, vol.21, 1980, pp.109-121.
30. S. J. Gregg, W. B. Jepson ,〝The High-Temperature Oxidation of Magnesium In Dry and In Moist Oxygen〞, Journal of The Institute of Metals, vol.87, 1958, pp.180-203.
31. A. E. Valov, Yu. A. Kustov and V. I. Shevtsov,〝Spectroscopic Study of The Combustion of Solitary Magnesium Particles In Air And In Carbon Dioxide〞, Fizika Goreniya I Vzryva, vol.30, n.4, 1994, pp.29-35.
32. E. Ya. Shafirovich and U. I. Goldshleger,〝The Superheat Phenomenon In The Combustion of Magnesium Particles〞, Combustion And Flame, vol.88, 1992, pp.425-432.
33. Teng-Shih Shih, Chian-Bound Chung and Kwo-Zong Chong,〝Combustion of Magnesium Alloys under Air Atmosphere〞, Proceedings of The Seventh Asian Foundry Congress, October 12-15, 2001, Taipei, Taiwan, pp.407-414.
34. 許傳仁,〝鎂合金廢料回收技術現況〞,鑄造月刊,第141期,90年6月,pp.13-17.
35. ASM Handbook, vol. 3,〝Binary Alloy Phase Diagrams〞, 1992.
36. ASM Handbook, vol. 4,〝Heat Treating of Noferrous Alloys〞, 1991.
指導教授 施登士(Teng-Shih Shih) 審核日期 2002-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明