參考文獻 |
[ 1] Weinberg, F. J., “Combustion Temperature: The Future?” Nature, Vol. 233, pp. 239-241, 1971.
[ 2] Lloyd, S. A., and Weinberg, F. J., “A Burner for Mixtures of Very Low Heat Content,” Nature, Vol. 251, pp. 47-49, 1974.
[ 3] Lloyd, S. A., and Weinberg, F. J., “Limits to Energy Release and Utilisation from Chemical Fuels,” Nature, Vol. 257, pp. 367-370, 1975.
[ 4] Hardesty, D. R., and Weinberg, F. J., “Burners Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 8, pp. 201-214, 1974.
[ 5] Hardesty, D. R., and Weinberg, F. J., “Converter Efficiency in Burner Systems Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 12, pp. 153-157, 1976.
[ 6] Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
[ 7] Kotani, Y., and Takeno, T., “An Experimental Study on Stability and Combustion Characteristics of an Excess Enthalpy Flame,” Nineteenth Symposium (International) on Combustion/The Combustion Institute, pp. 1503-1509, 1982.
[ 8] Echigo, R., Yoshizawa, Y. Hamamura, K., and Tomimura, T., “Analytical and Experimental Studies on Radiative Propagation in Porous Media With Internal Heat Generation,” Proceedings of the 8th International Heat Transfer Conference, San Francisco, CA, Vol. II, pp. 827-832, 1986.
[ 9] Yoshizawa, Y., Sasaki, K., and Echigo, R.,”Analytical Study of the Structure of Radiation Controlled Flame,” International Journal of Heat and Mass Transfer, Vol. 31, No. 2, pp. 311-319, 1988.
[10] Sathe, S. B., Peck, R. E., and Tong, T.-W., “Flame Stabilization and Multimode Heat Transfer in Inert Porous Media: A Numerical Study,” Combustion Science and Technology, Vol. 70, pp. 93-109, 1990.
[11] Sathe, S. B., Peck, R. E., and Tong, T.-W., “A Numerical Analysis of Heat Transfer and Combustion in Porous Radiant Burners,” International Journal of Heat and Mass Transfer, Vol. 33, No. 6, pp. 1331-1338, 1990.
[12] Evans, W. D., Howell, J. R., and Varghese, P. L., “The Stability Limits of Methane Combustion Inside a Porous Ceramic Matrix,” AIAA/ASME Joint Propulsion Conference, Sacramento, California, 1991.
[13] Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” ASME/JSME Thermal Engineering Proceedings, Vol. 4, pp. 225-231, 1991.
[14] Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” Transactions of the ASME, Vol. 115, pp. 744-750, 1993.
[15] Hsu, P.-F., Matthews, R. D., “The necessity of using detailed kinetics in models for premixed combustion within porous media,” Combustion and Flame, Vol. 93, pp. 457-466, 1993
[16] Hsu, P.-F., “Experimental Study of the Premixed Combustion within the Nonhomogenous Porous Ceramic Media,” HTD-Vol. 328, National Heat Tranfer Conference, Vol. 6, ASME 1996.
[17] C.L. Hackert, J. L Ellzey, and O A. Ezekoye, “Combustion and Heat Transfer in Model Two-Dimensional Porous Burners,” Combustion and Flame, Vol. 116, 1999.
[18] Marc D. Rumminger, D. Hamlin, Robert W. Dibble, “Numerical analysis of a catalytic radiant burner: effect of catalyst on radiant efficiency and operability,” Catalysis Today Vol. 47, 1999.
[19] G. Brener, K. Pickenacker, O. Pickenacjer, D. Trmis,k. Wawrzinek, and t. Weber, “Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media”, Combustion and Flame, Vol. 123, pp. 201-213, 2000.
[20] Tseng, C.-J., and Li, C.-H., “Thermally-Enhanced Combustion in a Porous Medium Burner,” Journal of the Chinese Society of Mechanical Engineers, Vol. 22, No. 3, pp. 217-224, 2001.
[21] 曾重仁 蔡桓宇, “多孔性介質爐中熱增強燃燒現象之數值模擬,” 力學 第十七卷 第一期 51-61頁,民國90年六月。
[22] Tseng, C.-J., “Liquid Fuel Combustion in Porous Ceramic Burners,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1995.
[23] Tseng, C.-J., and Howell, J. R., “Liquid Fuel Combustion within Porous Inert Media,” Heat Transfer with Combined Modes, ASME-HTD, Vol. 299, pp. 63-69, 1994.
[24] Tseng, C.-J., and Howell, J. R., “Combustion of Liquid Fuels in a Porous Radiant Burner,” Combustion Science and Technology, Vol. 112, pp. 141-161, 1996.
[25] Kaplan, M., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” M.S. Thesis, Department of Mechanical Engineering, The University of Texas at Austin, 1994.
[26] Kaplan, M., and Hall, M. J., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” Experimental Thermal and Fluid Science, Vol. 11, pp. 13-20, 1995.
[27] Karim, G. A., Wierzba, I., and Al-Alousi, Y., “Methane – Hydrogen Mixtures as Fules,” International Journal of Hydrogen Energy, Vol. 21, No. 7, pp. 625-631, 1996.
[28] Karim, G. A., Bade Shrestha, S. O., “Hydrogen as an additive to methane for spark ignition engine applications,” International Journal of Hydrogen Energy, Vol. 24, pp. 577-586, 1999.
[29] Uykur, C., Henshaw, P. F., Ting, D. S.-K. and Barron, R. M., “Effects of addition of electrolysis production on methane / air premixed laminar combustion,” International Journal of Hydrogen Energy, Vol. 26, pp. 265-273, 2001.
[30] Tseng, C.-J., “Effects of hydrogen addition on methane combustion in a porous medium burner,” International Journal of Hydrogen Energy, Vol. 27, pp. 699-707, 2002.
[31] Veziroglu, T. N., International Journal of Hydrogen Energy, Vol. 25, pp. 1143, 2000.
[32] Bear, J., Dynamics of Fluids in Porous Media, Dover Publications, Inc., New York, 1972.
[33] Hiatt, J. P., and Hall, M. J., “Pore Scale Turbulence in Porous Ceramic Burners,” 1994 Technical Meeting of the Central States Section of the Combustion Institute, 1994.
[34] Bejan, A., Convection Heat Transfer, John Wiley & Sons, New York, Chap. 12, Sec. 2, 1995.
[35] S. Ergun, “Fluid Flow through Packed Columns,” Chem. Eng. Progr. , Vol. 48, No. 2, 1952
[36] Burmeister, L. C., Convective Heat Transfer , John Wiley & Sons, New York, Chap. 10, Sec. 7, 1992
[38] Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons, New York, 1960.
[39] Hendricks, T. J., “Thermal Radiative Properties and Modeling of Reticulated Porous Ceramics,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1994.
[40] Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, Wiley, New York, 1975.
[41] Hsu, P.-F., “Analytical and Experimental Study of Combustion in Porous Inert Media,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1991.
[42] Kee, R. J., Rupley, F. M. and Miller, J. A., ”The Chemkin Thermodynamic Data Base,” Sandia Report, SAND87-8215B, 1991.
[43] Younis, L. B. and Viskanta, R., “Experimental Determination of the volumetric heat transfer coefficient between stream of air and ceramic foam,” International Journal of Heat and Mass Transfer, Vol. 36, No. 6, pp. 1425-1434, 1993.
[46] S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, 1996.
[47] P. J. Coelho, J. M. Goncalves, and D. N. Trivic, “Modelling of Radiative Heat Transfer in Enclosures with Obstacles,” Int. J. Heat Mass Transfer, Vol. 41, Nos 4-5, 1998.
[48] Nuray Kayakol, Nevin Selcuk, Ian Campbell, Omer L. Gulder, “Performance of Discrete Ordinates Method in a Gas Turbine Combustor simulator,” Experimental Thermal and Fluid Science, Vol. 21, 2000.
[49] Siegel, R., and Howell, J. R., Thermal Radiation Heat Transfer, Third Ed., Hemisphere Publishing Corp., Washington, DC., 1992.
[51] Hsu, P.-F., and Matthews, R. D., “The Necessity of Using Detailed Kinetics in Models for Premixd Combustion within Porous Media,” Combustion and Flame, Vol. 93, pp. 457-466, 1993.
[54] High-Tech Ceramics product literature, High-Tech Ceramics Co., Alfred, New York, 1988.
[55] Touloukian, Y. S. (Ed.), Thermophysical Properties of Matter, Thermophysical Properties Research Center, Purdue University, 1978.
[56] Moffat, R. J., “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, Vol. 1, pp. 3-17, 1988.
[57] Glassman, I., Combustion, Third Edition, Academic Press, Orlando, 1996.
[58] Blint, R. J., “The Relationship of the Laminar Flame Width of Flame Speed,” Combustion Science and Technology, Vol. 49, pp. 79-92, 1986. |