國立中央大學九十一學年度碩士班研究生入學試顯卷

所别: <u>機械工程學系 甲維 科目</u>: 材料力學 共 Z 頁 第 / 頁

- 1. The assembly shown in Fig. 1 consists of a steel rod A (modulus of elasticity $E_A = 210$ GPa, elastic strength $S_A = 430$ MPa, cross sectional area $A_A = 1600$ mm², and thermal expansion coefficient $\alpha_A = 12 \times 10^{-6}/^{\circ}\text{C}$), a rigid bearing plate C that is securely fastened to bar A, and a bronze bar B ($E_B = 100$ GPa, $S_B = 140$ MPa, $A_B = 2500$ mm², and $\alpha_B = 17 \times 10^{-6}/^{\circ}\text{C}$). A clearance of 0.4 mm exists between the bearing plate C and bar B before the assembly is slowly raised from 25°C to 50°C. Determine
 - (a) The maximum value of P that can be applied to the assembly without causing any plastic deformation during loading and heating. (20%)
 - (b) The corresponding displacement of plate C. (5%)
- A solid bar of circular cross section is subjected to an axial tensile force T = 26 kN and a bending moment M = 3 kN-m (see Fig. 2). Based upon an allowable stress in tension of 120 MPa, what is the required diameter d of the bar? (25%)
- 3. A beam is loaded and supported as shown in Fig. 3. Determine
 - (a) The deflection midway between the supports. (13%)
 - (b) The maximum deflection in the interval between the supports. (12%)

Fig.

Fig. 2

Fig. 3

注:背面有試題

國立中央大學九十一學年度碩士班研究生入學試題卷

所別: 機械工程學系 甲組 科目: 材料力學 共 2 頁 第 2 頁

- 4. A friction wheel mechanism will transmit power from motor to working machine as shown in Fig. 4a. The applied normal force F is 1000 N and the caused torque T without slipping on the output shaft is equal to 60 N-m (on machine side). The point A (see Fig. 4b) on the surface of the output shaft is the weakest place.
 - (a) The bending tensile stress σ_b and torsional shear stress τ_t at the point A can be expressed with the shaft diameter d [mm] at point A:

$$\sigma_{b} = C_{b} \cdot \frac{32}{\pi \cdot d^{3}} \cdot \text{N/mm}^{2},$$

$$\tau_{t} = C_{t} \cdot \frac{32}{\pi \cdot d^{3}} \cdot \text{N/mm}^{2}.$$

Please calculate the factor C_b and C_b (7%)

- (b) If the value of the shaft diameter d satisfies the relation $\pi d^3/32 = 2000 \text{ mm}^3$, please use the stresses σ_b and τ_t calculated above to construct complete Mohr's Circle with necessary notation. (10%)
- (c) Please determine also the principal stresses σ₁, σ₂, the maximum shear stress τ_{max} and the angle of inclination of principal plane φ_σ with aid of this Mohr's circle. The angle φ_σ is measured from the positive z-axis of the original stress element to the maximum principal stress σ₁. (8%)

