博碩士論文 89343007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.138.105.4
姓名 劉弘松(Hung-Sung Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 結合微放電與研磨技術之高精度微孔加工研究
(Study of Micro-EDM combined with Abrasive Finishing method to Micro-hole)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高精度的微細孔洞,一直是微細加工技術所追求的目標之一,由於微孔廣泛應用於微閥、微射流口、微感應器、微模具等場合,因此如何使用經濟的方法,來製造高精度的微細孔洞,是本研究的重點。微細放電加工法(micro-EDM)係運用傳統的放電加工原理,以高加工精度、少去除量,微小且穩定能量型態,加工任何導電材料;是製作形狀複雜或硬、脆、韌等難加工材料微細元件的有效方法,這種非接觸式的加工技術經常用來製作孔徑小於100μm的微孔的有效方法之一,但在微細放電加工後,由於工具電極的消耗,會使加工後之微孔形成錐度狀,且微孔的孔壁表面會形成再凝固層、微裂痕與放電坑,孔壁的表面粗糙度不佳,嚴重影響微孔的孔徑尺寸及幾何形狀精度。由於微孔無法以傳統的內圓磨加工法進行加工,因此本研究提出結合微細放電與研磨的精修技術,針對微細放電後表面粗糙度不佳的微孔進行改善研究。
本研究提出的四種研磨精修技術,分別為螺旋研磨法、抖動研磨法、超音波振動研磨法及電解拋光法,針對微細放電後之微孔或異形微孔,進行線上的研磨精修加工,改善微孔的孔壁表面品質。實驗結果顯示,以精修微細圓孔為例,採用螺旋電極研磨法或高頻抖動研磨加工法,孔壁表面均可獲得顯著的研磨效果,表面粗糙度值由研磨前之2.11 Rmax降低至0.85 Rmax,在研磨加工時間上的比較,螺旋電極研磨法約需120分鐘;利用此加工法搭配超音波振動,則加工時間可降至30分鐘,而採用高頻抖動研磨法僅需15分鐘。針對異形微孔;採用超音波研磨法或電解拋光法,由AFM量測表面粗度值顯示,孔壁表面粗度值Rmax由0.957μm(Ra 0.11μm)降至 0.31μm(Ra 0.015μm);再由SEM的觀察顯示,孔璧表面甚為光平。在研磨加工時間上的比較,超音波振動研磨法約需45分鐘,而電解拋光法僅需5分鐘,即可得到光滑平整的微孔孔壁。
摘要(英) High precision micro-holes are one of the objectives that can be fabricated by micro machining method. Since micro-holes are widely used in the micro-valve, micro-fluidics, micro-sensor and micro-mould applications, an economical and effective method producing high accuracy micro-holes is focused in this thesis. Based on the traditional electrical discharge machining (EDM) principle, the micro-EDM can be utilized to fabricate conductive materials with high precision, less material remove rate, micro and stable energy state. Micro-EDM is an effective method to produce fine devices with complex shapes. Hard, brittle or tough materials are easily fabricated by this process. This noncontact manufacturing process is frequently used to produce micro-holes with diameter less than 100 ?m. However, micro-EDM will cause recast layer, discharge craters and micro-cracks on the machined surface with poor surface quality. This affects the precision of diameter and the geometric shape. Moreover, owing to the wear of the electrode during the process, not only will the dimension of the machined micro-hole be changed, but also its shape is severely distorted. Unfortunately, the conventional grinding is difficult to refine the machined surface by inserting the micro-tool into the micro-hole. To solve such problems, in this study, some different finishing methods, followed after the micro-EDM process, were developed to produce a superior refined surface of the micro-hole with almost no machining defects.
After the micro-hole is made by micro-EDM, four kinds of finishing methods will be applied to improve the surface quality of the micro-hole. The four finishing methods are helix grinding method (HG), high frequency dither grinding method (HFDG), ultrasonic vibration grinding method (UVG), and electropolishing method (EP). The shapes of the micro-holes investigated in this study are not only the circular type but also the special shape. Experimental results show that the surface roughness of the micro-hole can be well refined without micro-cracks by each of the proposed methods. For the circular shape of the micro-hole, the HFDG takes only 15 minutes to improve the work surface from 2.11 to 0.85 μm Rmax, while the HG and the UVG require 120 and 30 minutes respectively. By using UVG or EP, the surface roughness of the micro-hole with special shape can be improved from 0.957 μm Rmax (0.11μm Ra) to 0.31 μm Rmax (0.015μm Ra), which is measured by AFM. However, the EP takes only 5 minutes, while the UVG requires 45 minutes.
關鍵字(中) ★ 微放電加工
★ 線放電研磨
★ 抖動研磨
★ 電解拋光
★ 微細孔
關鍵字(英) ★ dither
★ Micro-EDM
★ WEDG
★ electropolishing
★ micro-hole
論文目次 目 錄
摘 要 I
Abstract II
謝 誌 IV
目 錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1研究動機與目的 1
1-2 研究的背景 3
1-3文獻回顧 4
1-4 研究方向 12
1-5 研究方法 13
1-6 本論文之構成 15
第二章 結合微放電與螺旋研磨改善微孔精度的研究17
2-1 前言 17
2-2 基本原理 18
2-2-1 微細放電加工18
2-2-2 微細電極製作19
2-2-3 磁力研磨原理21
2-3 實驗方法與研究內容 23
2-3-1 實驗設備 23
2-3-2 實驗材料 25
2-3-3 加工過程 26
2-4 結果與討論 30
2-4-1 碳化鎢工具電極的線放電研磨修整 31
2-4-1-1 極間電壓對碳化鎢電極材料去除率的影響 31
2-4-1-2 放電電流對碳化鎢電極表面粗糙度的影響 33
2-4-1-3 主軸轉速對碳化鎢電極材料去除率的影響 34
2-4-2 磁力研磨法去除附著物 34
2-4-3 放電電流對加工微細孔的影響 36
2-4-3-1 擴孔量 37
2-4-3-2 入出口直徑差 37
2-4-3-3 電極的消耗 40
2-4-3-4 材料去除率 41
2-4-4 脈衝時間對加工微細孔的影響 42
2-4-4-1 擴孔量 42
2-4-4-2 入出口直徑差 43
2-4-4-3 電極消耗 43
2-4-4-4 材料去除率 45
2-4-5 極間電壓對加工微細孔的影響 46
2-4-5-1 擴孔量 46
2-4-5-2 入出口直徑差 47
2-4-5-3電極消耗 48
2-4-6 螺旋電極研磨法 49
2-4-7 螺旋電極附加超音波振動研磨法 51
2-4-7-1 螺旋研磨工具階級差的影響 56
2-4-7-2 螺旋研磨工具轉速的影響 57
2-4-7-3 超音波振幅的影響 58
2-4-7-4 研磨時間的影響 59
2-4-7-5 圓形微孔孔壁表面粗度改善情況 60
2-5 實驗的應用 66
2-5-1 微細工具電極 66
2-5-2 異形微細電極與異形微細孔 68
2-5-3 微細孔陣列 69
2-6 結論 70
第三章 結合微放電與抖動研磨改善微孔精度的研究71
3-1 前言 71
3-2 加工原理 72
3-2-1 抖動器(Dither)之原理 72
3-2-2 抖動器之模態分析 74
3-3 實驗方法與研究內容 75
3-3-1 實驗設備 75
3-3-2 實驗參數 76
3-3-3 加工過程 76
3-4 實驗結果與討論 77
3-4-1 電極形式對改善微細圓孔孔壁表面性質之影響77
3-4-2不同放電能量成型之微孔高頻抖動研磨後之比較78
3-4-3抖動電壓對改善微細圓孔孔壁表面性質之探討81
3-4-4 研磨時間對改善微孔壁表面性質之探討 83
3-5 螺旋電極研磨法與高頻抖動研磨法之比較 86
3-6 結論 88
第四章 結合微放電與超音波振動研磨精修異形微孔的研究 89
4-1 前言 89
4-2 加工原理 90
4-3 實驗內容與方法 95
4-3-1 實驗設備 95
4-3-2 實驗方法 97
4-4 結果與討論 99
4-4-1不同成型方式對改善異形微孔精度之探討 99
4-4-2超音波振動研磨對改善異形微孔精度之探討 102
4-4-2-1 異形微孔入出口邊長差改善率 104
4-2-2-2 異形微孔孔壁表面粗度改善情況 107
4-4 結論 112
第五章 結合微放電與電解拋光改善微孔精度的研究113
5-1前言 113
5-2基本原理 114
5-2-1 電化學加工 114
5-2-2 電解拋光原理 116
5-2-2-1 整平與亮化 120
5-2-2-2 電解拋光的電解液 121
5-2-2-3 金屬的鈍化 121
5-3實驗內容與方法 123
5-3-1實驗方法 123
5-4 結果與討論 126
5-4-1電解液陽極極化曲線 126
5-4-2電解液濃度比例對電解拋光特性之影響 126
5-4-3 電解電壓對電解拋光特性之影響 129
5-4-4 電解電壓對孔口型態之影響 131
5-4-5 擾動電解液對電解拋光特性之影響 135
5-4-6 電解時間對改善孔壁表面性質之影響 137
5-4-7 電解拋光後孔壁表面型態之探討 138
5-4-8 電解拋光異形微孔 141
5-5 結論 142
第六章 總結論 143
參考文獻 146
作者簡介 157
圖目錄
圖1-1 實驗架構圖 14
圖 2-1 放電加工機機構示意圖19
圖 2-2 塊狀電極放電成形法 20
圖 2-3 線放電研磨的機構與加工示意圖 21
圖2-4 磁力研磨(a)示意圖(b)磁粒之作用力與磁場分佈22
圖2-5 實驗設備圖;(a)示意圖,(b)照片圖 24
圖2-6 修整電極之加工步驟示意圖 27
圖2-7 螺旋形工具電極示意圖 28
圖2-8 工具電極修整後線上微細孔放電之示意圖 29
圖2-9螺旋電極研磨加工示意圖 30
圖2-10 放電電流1A時引弧電壓對修整WC電極材料去除率的影響 32
圖2-11 放電電流2A時引弧電壓對修整WC電極材料去除率的影響 32
圖2-12 電流大小對WC電極表面粗糙度的影響 33
圖2-13 主軸轉速對WC電極材料去除率的影響 34
圖2-14 磁力研磨去除附著物示意圖 35
圖2-15 磁力研磨前的電極表面狀態 36
圖2-16 磁力研磨後電極表面改善狀況 36
圖2-17 電流大小對微細孔擴孔量的影響 37
圖2-18電流大小對微細孔入出口直徑差的影響 38
圖2-19放電電流100mA時微細孔之入出口與孔壁剖面SEM圖 39
圖2-20 放電電流2A時微細孔之入出口與孔壁剖面SEM圖39
圖2-21電流大小對電極消耗長度的影響 40
圖2-22電流大小對微細孔材料去除率的影響 41
圖2-23 脈衝時間對微細孔擴孔量的影響 42
圖2-24 脈衝時間對微細孔入出口直徑差的影響 43
圖2-25 加工前後電極消耗的SEM圖 44
圖2-26 脈衝時間對電極消耗長度的影響 44
圖2-27 脈衝時間對微細孔材料去除率的影響 45
圖2-28 極間電壓對擴孔量的影響 46
圖2-29 極間電壓對入出口直徑差的影響 47
圖2-30 極間電壓對電極消耗長度的影響 48
圖2-31 微孔放電加工後有、無經過SiC研磨加工之SEM比較圖(放電電流500mA) 50
圖2-32螺旋電極附加超音波振動研磨加工示意圖 51
圖2-33 螺旋電極帶動黏彈性磨料之外觀圖 52
圖2-34螺旋電極附加超音波振動研磨法加工流程示意圖54
圖2-35 螺旋研磨工具階級差對入出口孔徑差之影響56
圖2-36 螺旋研磨工具轉速對入出口孔徑差之影響 57
圖2-37 超音波振幅對入出口孔徑差之影響 58
圖2-38 研磨時間對入出口孔徑差之影響 59
圖2-39 不同階級差研磨加工後的孔壁表面比較圖 60
圖2-40 不同轉速研磨加工後的孔壁表面比較圖 61
圖2-41 不同振幅研磨加工後的孔壁表面比較圖 62
圖2-42 不同研磨時間研磨加工後之圓形微孔剖面SEM圖63
圖2-43 不同研磨時間研磨加工後之圓形微孔表面1500倍SEM圖 64
圖2-44螺旋電極附加超音波振動研磨前後之表面形貌圖65
圖2-45 長度1000μm直徑20μm之圓棒電極 66
圖2-46 長度600μm直徑15μm之圓棒電極 66
圖2-47 矩形工具電極SEM圖 67
圖2-48 螺旋形工具電極SEM圖 67
圖2-49各式異形電極與異形孔 68
圖2-50 各式微細孔陣列 69
圖3-1 高頻抖動機構作動示意圖 72
圖3-2 抖動電壓與角位移振幅大小的關係圖 73
圖3-3抖動器往復扭動的作動示意圖 74
圖3-4 高頻抖動研磨加工示意圖,右上角為放大圖,右下角為階級式工具電極與工件間之抖動研磨放大圖 75
圖3-5單段、階級式電極對微細孔剖面改善之比較圖78
圖3-6不同放電電流放電加工後之微孔剖面圖 79
圖3-7高頻抖動研磨加工不同放電能量之微孔後之剖面圖(抖動電壓40V,加工時間15分) 80
圖3-8放電電流100mA,抖動電壓40V之入口端 81
圖3-9 放電電流500mA之微細圓孔在不同抖動電壓下孔壁表面改善之SEM圖 82
圖3-10不同加工時間之微孔剖面圖(放電電流500mA,抖動電壓40V) 84
圖3-11抖動研磨前與研磨後的工件比較 85
圖3-12 螺旋電極研磨法與高頻抖動研磨法加工示意圖87
圖3-13 螺旋電極研磨法與高頻抖動研磨法之SEM比較圖87
圖4-1 超音波振動加工示意圖 90
圖4-2 實驗設備示意圖 96
圖4-3 超音波振動機構 96
圖4-4 階級式工具電極示意圖 98
圖4-5 微細孔超音波複合加工示意圖 98
圖4-6異形電極超音波振動研磨示意圖 99
圖4-7 兩種不同微孔成型方式對擴孔量之影響 100
圖4-8 兩種不同微孔成型方式對加工時間之影響 101
圖4-9 兩種不同微孔成型方式之微孔SEM圖 101
圖4-10 異形電極超音波振動研磨流程示意圖 103
圖4-11 異形研磨工具階級差對入出口邊長差之影響105
圖4-12 超音波振幅對入出口邊長差之影響 106
圖4-13 研磨時間對入出口邊長差之影響 107
圖4-14 超音波研磨前後之SEM圖 108
圖4-15 不同研磨時間研磨加工後異形微孔剖面SEM圖109
圖4-16不同研磨時間研磨加工後之異形微孔表面SEM圖(1500倍) 109
圖4-17 超音波振動研磨前後之表面形貌圖 111
圖5-1電解拋光加工示意圖 117
圖5-2 電化學拋光之電流-電壓(I-V)曲線圖 118
圖5-3 陽極極化曲線示意圖 120
圖5-4 鐵在NaNO3電解液中的鈍化曲線 122
圖5-5 實驗流程圖 124
圖5-6 實驗工具電極示意圖 124
圖5-7 電解拋光設備(a)拋光示意圖,(b)機構示意圖125
圖5-8 濃度比例1:10電解液之陽極極化曲線 126
圖5-9 三種不同電解液濃度比例電流-電壓(I-V)曲線127
圖5-10 不同濃度比例電解拋光後微細圓孔孔壁表面SEM圖(電解電壓2V,電解電流0.02A,加工時間1分鐘) 128
圖5-11 不同電壓電解拋光後微細圓孔孔壁表面SEM圖(電解液比例1:10,加工時間5分鐘) 130
圖5-12電解電壓對擴孔量的影響 131
圖5-13 電解拋光前後微孔狀態示意圖 132
圖5-14 電解拋光對入出口孔徑差之影響 133
圖5-15 不同電壓電解拋光後微細孔孔口表面SEM圖(電解液比例1:10,加工時間5分鐘) 134
圖5-16 不同電極轉速電解拋光後孔壁表面SEM圖 136
(電解液比例1:10,加工時間5分鐘) 136
圖5-17 不同加工時間電解拋光後微細圓孔孔壁表面SEM圖(電解電壓2V,電解液比例1:10) 138
圖5-18 電解拋光孔壁表面型態之變化圖 140
圖5-19微放電與電解拋光後孔壁表面比較圖(放大倍率1000倍)140
圖5-20 電解拋光後之微細異形孔孔口表面SEM圖(電解液比例1:10,加工時間5分鐘)141
表目錄
表2-1 修整工具電極實驗參數設定值 25
表2-2 高鎳合金之成分與機械物理性質 26
表2-3 碳化鎢工具電極之成分與機械物理性質 27
表2-4 微細孔加工實驗參數設定值 29
表2-5 磁力研磨加工條 35
表2-6 放電加工與研磨加工參數條件 49
表2-7 超音波振動研磨加工參數 53
表3-1 壓電陶瓷片之材料性質 72
表3-2 抖動簧片之物性 73
表3-3 實驗加工參數 76
表3-4 高頻抖動研磨加工參數 80
表6-1 四種研磨加工法之比較 143
參考文獻 1.K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture 43 (2003) 1287–1300.
2.E.J. Weller, Nontraditional machining Processes, Society of Manufacturing Engineers, Dearborn, Michigan, USA. 2/e (1983).
3.郭佳儱,微放電加工技術於MEMS 之應用,機械月刊第二十五卷第十一期 (1999) 304-313。
4.機械技術雜誌編輯部,二十一世紀的顯學:微機電系統--微放電精密加工,機械技術雜誌189期 (2000) 220-228。
5.T. Tamura, Y. Kobayashi, Measurement of impulsive forces and crater formation in impulse discharge, Journal of Materials Processing Technology 149 (2004) 212–216.
6.J.D. Ayers, K. Moore, Formation of metal carbide powder by spark machining of reactive metals, Metallurgical Transactions A 15A (1984) 1117–1127.
7.P.C. Pandey, S.T. Jilani, Plasma channel growth and the resolidified layer in EDM, Precision Engineering 8 (2) (1986) 104–110.
8.T. Tsutsui, T. Tamura, Effect of the electro-discharge machined surface on the mechanical properties. On the surface defects and transverse rupture strength of cemented carbide, Bulletin of the Japan Society of Precision Engineering 20 (1) (1986) 60-61.
9.L.C. Lee, L.C. Lim, V. Narayanan, V.C. Venkatesh, Quantification of surface damage of tool steels after EDM, International Journal of Machine Tools & Manufacture 28 (4) (1988) 359–372.
10.L.C. Lee, L.C. Lim, Y.S. Wong, H.H. Lu, Towards a better understanding of the surface features of electro-discharge machined tool steels, Journal of Materials Processing Technology 24 (1990) 513–523.
11.L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu, Solidification microstructure of electrodischarge machined surfaces of tool steels, Materials Science Technology 7 (3) (1991) 239–248.
12.O.A. Abu, Zeid, On the effect of electro-discharge machining parameters on the fatigue life of AISI D6 tool steel, Journal of Materials Processing Technology 68 (1) (1997) 27–32.
13.B.H. Yan, C.C. Wang, H.M. Chow, Y.C. Lin, Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite, International Journal of Machine Tools & Manufacture 40 (10) (2000) 1403–1421.
14.Y.H. Guu, H. Hocheng, C.Y. Chou, C.S. Deng, Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel, Materials Science and Engineering A358 (2003) 37–43.
15.K.M. Shu, G.C. Tu, Study of electrical discharge grinding using metal matrix composite electrodes, International Journal of Machine Tools & Manufacture 43 (2003) 845–854.
16.W. Theisen, A. Schuermann, Electro-discharge machining of nickel–titanium shape memory alloys, Materials Science and Engineering A378 (2004) 200–204.
17.G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, R. Flükiger, Microstructure at submicron scale of the white layer produced by EDM technique, Journal of Materials Processing Technology 149 (2004) 289–295.
18.T. Takawshi, Study on the mirror surface machining by planetary EDM, International Symposium of Electro machining ISME-7 (1983) 137-147.
19.N. Mohri, N. Saito, T. Takawshi, K. Kobayashi, Mirro-Like finishing by EDM, International symposium on machine tool design and symposium (1987) 329-336.
20.N. Mohri, N. Saito, H. Ootake, T. Takawashi, K. Kobayashi, Finishing on the large area of work surface by EDM, Journal of Japan Society of Precision Engineering 153 (1) (1987) 124–130.
21.H. Narumiya, N. Mohri, N. Saito, H. Ootake, Y. Tsunekawa, T. Takawashi, K. Kobayashi, EDM by powder suspended working fluid, Proceedings of International symposium for Elcetro- Machining, The Japan Society of Electrical-Machining Engineers (1989) 5-8.
22.N. Saito, N. Mohri, Improvement of machined surface roughness in large area EDM, Journal of the Japan Society of Precision Engineering 57 (6) (1991) 954-958.
23.B.H. Yan, H.S. Liu, Small electrical discharge machining of Ti-6Al-4V alloy with rotating electrode, Journal of Japan Institute of Light Metals 43 (1993) 225-229.
24.B.H. Yan, S.L Chen, Effect of dielectric with suspended aluminum powder on EDM, J. of the Chinese Society of Mechanical Engineers 14 (3) (1993) 307-312.
25.B.H. Yan, S.L Chen, Characteristics of SKDII by complex process of electrical discharge machining using liquid suspended with aluminum powder, J. of Japan Inst. Metals 58 (9) (1994) 1067-1072.
26.H.M. Chow, B.H. Yan, F.Y. Hung, Study of added powder in kerosene for the micro-slit machine of titanium alloy electro-discharge machining, Journal of Material Processing Technology 101 (2000) 95-103.
27.B.H. Yan, C.C. Wang, H.M. Chow, Y.C. Lin, Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite, International Journal of Machine Tools and Manufacture - Design Research and Application 40 (10) (2000) 1403-1422.
28.T. Masuzawa, M. Fujino, K. Kobayashi and T. Suzuki, Wire Electro-Discharge Grinding for Micro-Machining, Annals of the CIRP, 34 (1) (1985) 431-434.
29.K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining
Using Water as a working Fluid-I: Micro-hole Drilling, Precision
Engineering, 8 (3) (1986) 156-162.
30.M. Kunieda, T. Masuzawa, A fundamental study on a horizontal EDM, Annals of the CIRP 37 (1) (1988) 187–190.
31.T. Masuzawa, J. Tsukamoto and M. Fujino, Drilling of Deep Microholes by EDM, Annals of the CIRP, 38 (1) (1989) 195-198.
32.K.P. Rajurkar, G.F. Royo, Improvement in EDM performance by R.F. control and orbital motion, American Society of Mechanical Engineers 34 (1989) 51-62.
33.T. Masuzawa, M. Yamamoto and M. Fujino, A Micropunching System Using Wire-EDM, Proc. of Int’l Symposium for Electromachining (ISEM-9) (1989) 86-89.
34.K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining Using Water as a working Fluid-2: Narrow Slit Fabrication, Precision Engineering, 12 (4) (1990) 213-217.
35.T. Masaki, K. Kawata and T. Masuzawa, Micro Electo-Discharge Machining and Its Application, Proc. of MEMS ‘90 IEEE (1990) 21-26.
36.C.L. Kuo, T. Masuzawa, M. Fujino, A micro-pipe fabrication process, Proc. Of MEMS ’91 IEEE (1991) 80-85.
37.C.L. Kuo, T. Masuzawa, M. Fujino, High Precision Micronozzle Fabrication Process, Proc. Of MEMS ’92 IEEE (1992) 116-121.
38.T. Masuzawa, C.L. Kuo, M. Fujino, A combined electrical machining process for micronozzle fabrication, Annals of the CIRP 43 (1) (1994)189-192.
39.H.H. Langen, T. Masuzawa, M. Fujino, Modular method for microparts machining and assembly with self-alignment, Annals of the CIRP 44 (1995) 173-176.
40.D.M. Allen, A. Lecheheb, Micro electro-discharge machining of ink jet nozzles: optimum selection of material and machining parameters, Journal of Material Processing Technology 58 (1996) 53-66.
41.Xi-Qing Sun, T. Masuzawa and M. Fjino, Micro ultrasonic machining and its applications in MEMS, Sensors and actuators A 57 (1996) 159-164.
42.D. Reynaerts, P.H. Heeren, H.V. Brussel, Microstructuring of silicon by electro-discharge machining (EDM) – part I: theory, Sensors and Actuators A, 60 (1997) 212-218.
43.P.H. Heeren, D. Reynaerts, H.V. Brussel, Three-dimensional silicon micromechanical parts manufactured by electro-discharge machining, Proceeding of MEMS ’97 IEEE (1997) 247-252.
44.Z.Y. Yu, T. Masuzawa, M. Fujino, Micro-EDM for three dimensional cavities – Development of uniform wear method -, Annals of the CIRP 47 (1) 1998 169-172.
45.B.H. Yan, F.Y. Huang, H.M. Chow, J.Y. Tasi, Micro-hole machining of carbide by electrical discharge machining, Journal of Material Processing Technology 87 (1999) 139-145.
46.K. Egashira, T. Masuzawa, Microultrasonic Machining by the Application of Workpiece Vibration, Annals of the CIRP 48 (1) (1999) 131-134.
47.K. Takahata, N. Shibaike, H. Guckel, A novel micro electro-discharge machining method using electrodes fabricated by the LIGA process, Proceeding of MEMS ’99 IEEE (1999) 238-243.
48.游聖恩,電化學拋光改善不銹鋼微細放電槽壁之研究,中央大學 機械工程研究所碩士論文 (2000)。
49.N. Mohri, H. Takezawa, K. Furutani, Y. Ito, T. Sata, A new process of additive and removal Machining by EDM with a thin electrode, Annals of the CIRP 49 (1) (2000) 123-126.
50.K.P. Rajurkar, Z.Y. Yu, 3D micro-EDM using CAD/CAM, Annals of the CIRP 49 (1) (2000) 127-130.
51.M.G. Her, F.T. Weng, Micro-hole machining of copper using the electro-discharge machining process with a tungsten carbide electrode compared with a copper electrode, International Journal of Advanced Manufacturing Technology 17 (2001) 715-719.
52.S.H. Yeo and G.G. Yap, A feasibility study on the micro electro-discharge machining process for photomask fabrication, International Journal of Advanced Manufacturing Technology 18 (2001) 7-11.
53.K. Takahata, Y.B. Gianchandani, Batch mode micro-EDM for high-density and high-throughput micromachining, Proceeding of MEMS ’01 IEEE (2001) 72-75.
54.K. Takahata, Y.B. Gianchandani, Batch mode Micro Electro Discharge machining, Journal of micro electro mechanical systems 11 (2) (2002) 102-110.
55.Y. Li, M. Guo, Z. Zhou, M. Hu, Micro electro discharge machine with an inchworm type of micro feed mechanism, Precision Engineering 26 (2002) 7-14.
56.Z.Y. Yu, K.P. Rajurkar, H. Shen, High aspect ratio and complex shaped blind micro holes by micro EDM, Annals of the CIRP 51 (1) (2002) 359-362.
57.K. Egashira, K. Mizutani, Micro-drilling of monocrystalline silicon using a cutting tool, Precision Engineering 26 (2002) 263-268.
58.F.T. Weng, M.H. Her, Study of the batch production of micro parts using the EDM process, International Journal of Advanced Manufacturing Technology 19 (2002) 266-270.
59.T. Mori, K. Hirota, S. Kurimoto, Y. Nakano, Die making of ultra-fine piercing by electric discharge machining, International symposium on micromechatronics and human science (2002) 61-66.
60.黃玉龍、郭佳儱,微放電加工製作微圓盤刀具進行銑削和研削微溝槽之研究,第十九屆機械工程研討會第四冊製造與材料(下) (2002) 747-754。
61.Y. Imai, A. Satake, A. Taneda and K. Kobayashi, Improvement of EDM machining speed by using frequency response actuator, International Journal of Electrical Machining 11 (1996) 21-26.
62.V.S.R. Murti, P.K. Philip, An analysis of the debris in ultrasonic-assisted electrical discharge machining, Wear 117 (1987) 241-250.
63.V.S.R. Murti, P.K. Philip, A comparative analysis of machining characteristics in ultrasonic assisted EDM by the response surface methodology, Int. J. Prod. Res. 25 (2) (1987) 259-272.
64.V.S.R. Murti, P.K. Philip, Pulse train analysis in ultrasonic assisted EDM, International Journal of Machine Tools and Manufacture 27 (24) (1987) 469-477.
65.D. Kremer, J.L. Lebrun, B. Hosari, A, Moisan, Effect of ultrasonic vibrations on the performances in EDM, Annals of CIRP 38 (1) (1989) 199-202.
66.S. Enache, C. Opran, G. Stoica, E. Strajescu, The study of EDM with forced vibration of tool-electrode, Annals of CIRP 39 (1) (1990) 167-170.
67.D. Kremer, C. Lhiaubet, A. Moisan, A study of the effect of synchronizing ultrasonic vibrations with pulse in EDM, Annals of the CIRP 40 (1) (1991) 211-214.
68.B.H. Yan, M.D. Chen, Effect of ultrasonic vibration on electrical discharge machining characteristic of Ti-6Al-4V alloy, Journal of Japan Institute of Light Metals 44 (5) (1993) 281-285.
69.J. Zhixin, Z. Jianhua, A. Xing, Ultrasonic vibration pulse electro-discharge Machining of holes in engineering ceramics, Journal of materials processing technology 53 (1995) 811-816.
70.J. Zhixin, A. Xing, Z. Jianhua, Study on mechanical pulse electric discharge machining, Precision Engineering 17 (2) (1995) 89-94.
71.S. L. Chen, F. Y. Huang, Y. Suzuki, B. H. Yan, Improvement of material removal rate of Ti-6Al-4V alloy by electrical discharge machining with multiple ultrasonic vibration, Journal of Japan Institute of Light Metals 47 (4) (1997) 220-225.
72.Z.N. Guo, T.C. Lee, T.M. Yue and W.S. Lau, A study of ultrasonic-aided wire electrical discharge machining, Journal of Materials Processing Technology 63 (1997) 823-828.
73.J.H. Zhang, T.C. Lee, W.S. Lau, X. Ax, Spark erosion with ultrasonic frequency, Journal of Materials Processing Technology 68 (1997) 83-88.
74.B.H. Yan, and C.C. Wang, The machining characteristics of Al2O3 /6061Al composite using rotary electro-discharge machining with a tube electrode”, Journal of Materials Processing Technology 195 (1999) 222-231.
75.B.H. Yan, C.C. Wang, W.D. Liu and F.Y. Huang, Machining characteristics of Al2O3 /6061Al composite using rotary EDM with a disklike electrode”, The International Journal of Advanced Manufacturing Technology 16 (2000) 322-333.
76.Y. C. Lin, B. H. Yan, Y. S. Chang, Machining characteristics of titanium alloy (Ti-6Al-4V) using combination process of EDM with USM, Journal of Materials Processing Technology 104 (2000) 171-177.
77.A.R. Jones, J.B. Hull, Ultrasonic flow polishing, Ultrasonic 36 (1998) 97-101.
78.B.H. Yan, C.C. Wang, H.M. Chow, Y.C. Lin, Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3 / 6061Al composite, International Journal of Machine Tools and Manufacture 40 (10) (2000) 1403-1422.
79.G.W. Chang, B.H. Yan, R.T. Hsu, Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives, International Journal of Machine Tools and Manufacture 42 (2002) 575-583.
80.H. Ohmori, T. Nakagawa, Analysis of mirror surface generation of hard and brittle materials by ELID (Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels, Annals of the CIRP 44 (1) (1995) 287-290.
81.K. Takahata, S. Aoki, T. Sato, Fine surface finishing method for 3-dimensional micro structures, Proceeding of MEMS ’96 IEEE (1996) 73-78.
82.H. Ramasawmy, L. Blunt, 3D surface topography assessment of the effect of different electrolytes during electrochemical polishing of EDM surfaces, International Journal of Machine Tools and Manufacture 42 (2002) 567-574.
83.N. Saito, N. Mohri, Improvement of machined surface roughness in large area EDM, Journal of Japan Society of Precision Engineering 57 (6) (1991) 954-958.
84.B.H. Yan, S.L. Chen, Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with aluminum powder, Journal of Japan Institute Metals 58 (9) (1994) 1067-1072.
85.N. Mohri, N. Saito, T. Takawashi, K. Kobayashi, Mirror-Like finishing by EDM, International symposium on machine tool design and symposium (1987) 329-336.
86.N. Mohri, N. Saito, H. Ootake, T. Takawashi, K. Kobayashi, Finishing on the large area of work surface by EDM, Journal of Japan Society of Precision Engineering 53 (1) (1987) 124-130.
87.H. Hocheng, P.S. Pa, Electropolishing and electrobrightening of holes using different feeding electrodes, Journal of Materials Processing Technology 89–90 (1999) 440–446.
88.Chunhe Zhang, Hitoshi Ohmori, Wei Li, Small-hole machining of ceramic material with electrolytic interval-dressing (ELID-II) grinding, Journal of Materials Processing Technology 105 (2000) 284-293.
89.C. Zhang, H. Ohmori, W. Li, Precision shaping of small diameter wheels using micro electric discharge truing (MEDT) and hole-machining of Al2O3 material, International Journal of Machine Tools and Manufacture 40 (2000) 661-674.
90.H. Onikura, O. Ohnishi, Y. Take, A. Kobayashi, Fabrication of micro carbide tools by ultrasonic vibration grinding, Annals of the CIRP 49 (1) (2000) 257-260.
91.J. Zhao, J. Zhan, R. Jin, M. Tao, An oblique ultrasonic polishing method by robot for free-form surface, International Journal of Machine Tools and Manufacture 40 (6) (2000) 795-808.
92.吳偉堯、郭佳儱、李季龍、游智翔、黃俊德、解安國,電解微針 狀成形及氣中放電製作微球狀電極之研究,第十九屆機械工程研 討會論文第四冊製造與材料(下) (2002) 731-738。
93.S.J. Lee, J.J. Lai, The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel, Journal of Material Processing Technology 140 (2003) 206-210.
94.T. Masuzawa, An Approach to Micromachining through Machine Tool Technology, Annals of the CIRP 34 (1) (1985) 419-425.
95.K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining using water as a working Fluid-1: Micro-hole Drilling, Precision Engineering 8 (3) (1986) 156-162.
96.W. Ehrfeld, H. Lehr, Deep X-Ray Lithography for the production of three-dimensional microstructures from metals, polymers and ceramics, Radiat. Phys. Chem. 45 (3) (1995) 349-365.
97.Seong, S. Choi, Jung, D.W. Kim, M.A. Yakshin, J.Y. Park, Y. Kuk, Frabrication and microelectron gun arrays using laser micromachining , Microelectronic Engineering 41-42 (1998) 167-170.
98.R.K Kupka, F. Bouamrance, C. Cremers, S. Megtert, Mircofabrication: LIGA-X and applications, Applied Surface Science 164 (2000) 97-110.
99.T. Shinmura, T. Aizawa, Study on a New Finishing Process of Fine Ceramics by Magnetic Abrasive Machining – On the Improving Effect of Finishing Efficiency Obtained by Mixing Diamond Magnetic Abrasives with Ferromagnetic Particles, J. of JSPE (in Japanese) 59 (8) (1993) 1251-1256.
100. H. Yamaguchi, T. Shinmura, Study of an internal magnetic abrasive finishing using a pole rotation system Discussion of the characteristic abrasive behavior, Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology 24 (2000) 237-244.
101. T. Shinmura, K. Takazawa, E. Hatano, M. Matsunaga, Study on Magnetic Abrasive Finishing, Annals of the CIRP 39 (1) (1990) 325-328.
102. 余承業,特種加工新技術,北京,國防工業出版社。
103. T. Lyman, Properties and Selection of Metals, eighth ed. Metals Handbook, vol. 1. American Society for Metals, Metals Park, Ohio. (1975) 785–797.
104. J. Bryzek, Impact of MEMS technology on society, Sensors and Actuators A:Physical 56 (1-2) (1996) 1-9.
105. A.C. Wang, B.H. Yan, X.T. Li, F.Y. Huang, Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining, International Journal of Machine Tools and Manufacture 42 (2002) 915-923.
106. C.T. Yang, S.S. Ho, B.H. Yan, Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining, Key Engineering Materials 196 (2001) 149-166.
107. M.C. Shaw, Ultrasonic Grinding, Microtecnic 10 (1956) 257.
108. G.E. Miller, Special Theory of Ultrasonic Machining, Journal of Applied Physics 28 (1957) 149.
109. L.D. Rozenberg et al., Ultrasonic Cutting, Authorized translation from the Russian (New York: Consultants Bureau 1964).
110. E.A. Neppiras, A High-Frequency Reciprocating Drill, Journal of Scientific Instruments 30 (1953) 72.
111. Leonardo R. Allain, Minoo Askari, David L. Stokes, Tuan Vo-Dinh, Microarray sampling-platform fabrication using bubble-jet echnology for a biochip system, Fresenius J Anal Chem. 371 (2001) 146-150.
112. T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, Review on Ultrasonic Machining, International Journal of Machine Tools & Manufacture 38 (1998) 239-255.
113. J. Peacock, Ultrasonic ups grinding efficiency, American machinist / Metal working manufacturing (1961) 124.
114. L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu, Solidification microstructure of electrodischarge machined surfaces of tool Steels, Materials Science and Technology 7 (1991) 239-248.
115. 張裕祺,電化學加工,化工技術 1 (5) (1993) 80-83。
116. 曾國輝,化學(下冊),藝軒圖書出版社 (1995)。
117. 賀陳弘、魏水文、巴白山,電化學拋光技術,機械工業雜誌170期 (1997) 122-128。
118. 陳裕豐,高潔淨閥件之流道表面處理-電解拋光(EP)技術,機械工業雜誌198期 (1997) 230-240。
119. S. Magaino, M. Matlosz and D. Landolt, An Impedance Study of Stainless Steel Electropolishing, J. Electrochem. Soc. 140 (5) (1993) 1365-1372.
120. 謝逸凡,全靜不銹鋼電化學拋光表面特性研究,長庚大學碩士論文 (2002)。
121. M. Matlosz and D. Landolt, Shape Changes in Electrochemical Polishing Part I: Anodic Leveling of Ni and Fe24Cr under Mass Transport Control, J. Electrochem. Soc. 136 (1989) 919.
122. Iva Betova, Martin Bojinov and Tzvety Tzvetkoff, Role of surface reactions in the transpassive dissolution of ferrous alloys in concentrated H3PO4, Applied Surface Science 220 (2003) 273-287.
123. V.B. Singh and Archana Gupta, Active, passive and transpassive dissolution of In-718 alloy in acidic solutions, Materials Chemistry and Physics 85 (2004) 12-19.
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2005-12-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明