幽互中央大学九十学牛皮領士班研究生入学試題卷

所別: 機械工程學系 乙組 科目: 機械材料及材料力學 共 2 頁 第 / 頁

注意:請依照題目次序在答卷上作答

A. 機械材料 (50%)

- \ (25%)

- 1. Answer the following questions regarding material's density (15%):
- (1). Offer an explanation as to why covalently bonded materials are generally less dense than ionically or metallically bonded ones. (5%)
- (2). Calculate the linear density of the [100] direction for body-centered cubic crystalline structure (BCC). (5%);
- (3) Calculate the planar density of the (110) plane for face-centered cubic crystalline structure (FCC). (5%).
- 2. Phosphorus is added to high-purity silicon to give a concentration of 10^{23} m⁻³ of charge carries at room temperature. (10%)
- (1) Is this material n-type or p-type? (5%)
- (2) Calculate the room-temperature conductivity of this material, assuming the electron and hole mobilities are the same as for the intrinsic material (0.14 m²/V-s). The absolute magnitude of the electrical charge on an electron is 1.6x10⁻¹⁹ C) (5%).

= \(25%)

- 1. A zinc single crystal is being pulled in tension with the normal to its basal plane (0001) at 60° to the tensile axis and the slip direction [1120] at 40° to the tensile axis.
- (1) What is the resolved shear stress, τ , acting in the slip direction when a tensile stress of 0.690 MPa (100 psi) is applied? (3%)
- (2) What tensile stress is necessary to reach the critical resolved shear stress, τ_{∞} of 0.94 Mpa (136psi)? (3%)
- 2. In a materials laboratory experiment, a student sketches a microstructure observed under an optical microscope.

The sketch appears as

The phase diagram for this alloy system is

È

Determine (1) whether the black regions in the sketch represent α or β phase (3%) and

- (2)the approximate alloy composition. (3%)
- 3. Compare precipitation hardening and the hardening of steel by quenching and tempering with regard to
 - (1) The total heat treatment procedure. (5%)
 - (2) The microstructure that develop. (4%)
 - (3) How the mechanical properties change during the several heat treatment stages. (4%)

國立中央大學九十學年度碩士班研究生入學試題卷

所別: 機械工程學系 乙組 科目: 機械材料及材料力學 共 2 頁 第 2 頁

B. 材料力學

一、(25%)

- A steel shaft and an aluminum tube are connected to a fixed support and to a rigid disk as shown in the cross section (Fig. 1). Knowing that the initial stresses are zero, determine the maximum torque T₀ which may be applied to the disk if the allowable stresses are 120 MPa in the steel shaft and 70 MPa in the aluminum tube. Use G = 80 GPa for steel and G = 27 GPa for aluminum. (10%)
- 2. Beam AB (Fig. 2) is fabricated from a mild steel which is assumed to be elastoplastic with $E = 29 \times 10^6$ psi and $\sigma_y = 36$ psi. Determine the bending moment M and the corresponding radius of curvature (a) when yield first occurs, (b) when the franges have just become fully plastic. (15%)

Fig. 1

Fig. 2

= (25%)

 By referring to the figure as shown for plane stress conditions, please derive the equations,

$$\sigma_{x'} = \frac{1}{2} \left(\sigma_x + \sigma_y \right) + \frac{1}{2} \left(\sigma_x - \sigma_y \right) \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$\tau_{x'y'} = -\frac{1}{2} \left(\sigma_x - \sigma_y \right) \sin 2\theta + \tau_{xy} \cos 2\theta$$

where the normal stress and shear stress acting on the x' plane are given in terms of rotation θ and the stresses σ_x , σ_y , and τ_{xy} acting on the x and y planes. (8%)

(3) Schematically construct a Mohr's circle with assuming that all stresses σ_x , σ_y , and τ_{xy} are greater than zero and $\sigma_x > \sigma_y$ (5%)

