國立中央大學98學年度碩士班考試入學試題卷

:機械工程學系碩士班 丙組(熱流) 科目:熱力學 共 Z 頁 第 / 頁 :能源工程研究所碩士班 *請在試卷答案卷(卡)內作答
請按題號順序作答,避免被漏改。若您要先做後面題目,請先在答案本預留空間。選擇題為單選或複選請自行判斷,必須全部答對才給分。
1. A worker pressurizes a rigid pipe (30 mm inside diameter, 20 m long) with dry air to check for leaks. The temperature and absolute pressure of the air in the pipe are 35 °C and 205 kPa. The worker returns 24 hours later and the absolute pressure has dropped to 183 kPa, while the air temperature inside the pipe has decreased to 21 °C. Universal gas constant is 287 Pa·m³/(kg·K).
(5 %) (a) Would we conclude that the pipe has leak merely because the pressure decreases fro 205 to 183 kPa? Why?
(10 %) (b) If the pipe has leaked, calculate the mass of air that has leaked from the pipe.
2. (20 %) A closed container maintained at 25 bars is subdivided into two sections by an insulated partition. One section contains 0.5 kg of water at 20 °C, while the other contains saturated steam. Determine the amount of steam present if, on removing the partition, the final state of the system is a wet mixture with 20 percent quality. The following data for water may be helpful: (1) At P=25 bars, T_{sat} = 224 °C, u_g =2603.1 kJ/kg, u_f =959.11 kJ/kg. (2) At T=20 °C, P_{sat} = 0.024 bars, u_g =2402.9 kJ/kg, u_f =83.95 kJ/kg.
3. (3 %) Which isentropic relations are correct, where T =temperature, v =specific volume, P =pressure, k =ratio of specific heat (a) Tv^k =constant (b) Tv^{k-l} =constant, (c) TP^{l-k} =constant, (d) Pv^k =constant
4. (5%) Consider the entropy balance of a tank with open valve with outside, what will affect the entropy change of the tank? (a) tank volume, (b) heat transfer to the tank, (c) mass flow in/out through the valve, (d) entropy generation
due to friction of the mass flow.
5. (4 %) Refrigerator is a cyclic device that from a cold space and to a warm space. The direction of heat transfer is from to
6. (5 %) Define and explain the first law efficiency and second law efficiency for a heat engine.
7. (6 %) What is the difference in thermodynamic process between spark-ignition and compression-ignition engines?
 8. (12 %) Briefly describe the basic four processes in terms of each component and thermodynamic characteristics of the ideal Rankine cycle.
9. (6%) Why do we need <i>cascade</i> or <i>multistage</i> refrigeration systems?
10. (4%) (a) Write down the definition of constant pressure specific heat c_p and constant volume specific heat c_v (2%) (b) Is $c_p \ge c_v$ or $c_p \le c_v$? (4%) (c) Explain physically the result of (b).

11. (4 %) (a) What is the working principle of evaporating cooling? (4 %) (b) Describe one application of evaporating cooling.

國立中央大學98學年度碩士班考試入學試題卷

所別:機械工程學系碩士班 丙組(熱流) 科目:熱力學 共 之 頁 第 之 頁 *請在試卷答案卷(卡)內作答

12. (6%) Which statements below are correct?

- (a) The van't Hoff equation describes the dependence of the equilibrium constant on temperature.
- (b) The van't Hoff equation describes the dependence of the equilibrium constant on pressure.
- (c) For an exothermic reaction, the equilibrium constant decreases as temperature is increased.
- (d) For an exothermic reaction, the equilibrium constant decreases as pressure is increased.

注:背面有試題