國立中央大學八十八學年度碩士班研究生入學試題卷

所別: 機械工程研究所 丁組 科目: 丁工程數學 共2頁第/頁

- 1. Solve the following problems
 - (1) Let $A = (a_y)$ be an $n \times n$ matrix such that for each i = 1, ... n

we have

$$\sum_{i=1}^n a_{ij} = 0$$

Show that 0 is an eigenvalue of A. (8%)

(2) A recursive formula is given as

$$r_{n+1} = 4r_n - t_n$$
, $t_{n+1} = 2r_n + t_n$

with the initial values, $r_0 = 100$ and $t_0 = 10$. Determine

$$\lim_{n\to\infty}\frac{r_n}{t_n}=? (8\%)$$

(3) A nonhomogeneous system of equations is given as

$$x - 2y + 3z = 1$$

$$2x + ky + 6z = 6$$

$$-x+3y+(k-3)=0$$

Determine the value of k for which (a) the system has a unique solution (3%), (b) the system has no solution (3%), and (c) the system has general solution (3%).

2. Solve the following partial differential equation:

$$\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2} + 1$$

$$\theta(x,0) = 0$$

$$\frac{\partial \theta(0,t)}{\partial x} = 0$$

$$\theta(L,t)=0$$

Please solve the problem according to the following the steps:

- (1) Separation of variables: $\theta(x, t) = \psi(x, t) + \varphi(x)$. (5%)
- (2) Solve $\varphi(x)$. (5%)
- (3) The variable $\psi(x, t)$ needs a further separation of variable. (5%)
- (4) Solve $\psi(x, t)$ and get the full answer of $\theta(x, t)$. (10%)

3. (a) (10%) Find the eigenvalues and eigenvectors of A, where A is defined as

$$\mathbf{A} = \left(\begin{array}{rrr} -6 & -4 & -2 \\ -4 & -6 & -2 \\ -2 & -2 & -17 \end{array} \right)$$

- (b) (5%) Find a diagonal matrix **D** and an orthogonal matrix **P**, such that $\mathbf{D} = \mathbf{P}^T \mathbf{A} \mathbf{P}$
- (c) (10%) Find the solution x(t) for a linear system,

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{A}\mathbf{x}(t)$$

with its initial condition $x(0) = (2,4,3)^T$.

注:背而有計類

國立中央大學八十八學年度碩士班研究生入學試題卷

所別: 機械工程研究所 丁組 科目: 丁工程數學 共2頁第2頁

- 4. In a computer language of your choice from Basic, Fortran, C, Pascal and LISP
 - (a) Write a computer program with comments to solve a root of $f(x)=x^3-7x$ using the Newton-Raphson Method. 10%
 - (b) Write a computer program with comments to solve the numerical solution of following first order initial value problem. 15%

$$y'=-ty^2$$
, $y(2)=1$, $2 \le t \le 10$