國立中央大學95學年度碩士班考試入學試題卷 # / 頁 # / 頁

所別:機械工程學系碩士班 戊組(生醫) 科目:熱力學 能源工程研究所碩士班

- 1. (10 %) What is heat engine? Please explain its purpose, efficiency and give a sketch to show its operating character.
- 2. (6 %) What is the Kelvin-Planck statement of the second law of thermodynamics?
- 3. (14 %) The general expression of a boundary work is $W_b = PdV$.

Consider the polytropic process $(PV^n = constant)$

- (a) Plot the P-V diagram for this process. (4%)
- (b) Derive the work done during a polytropic process in terms of P_1 , V_1 , P_2 , V_2 and n, where 1 and 2 are the initial and final state of the polytropic process. (6%)
- (c) Calculate the boundary work for $P_1=100 \text{ kPa}$, $V_2=0.1 \text{ m}^3$, $P_2=10 \text{ kPa}$, $V_2=0.5 \text{ m}^3$, and n=1.4. (4%)
- 4. (5%) Briefly describe the purpose of the Kyoto Protocol?
- 5. (5%) Is it possible to have water vapor at 10°C? Give a brief explanation.
- 6. (10%) Briefly explain the greenhouse effect. Why is it important to regulate the greenhouse effect?
- 7. (10%) A simple ideal Brayton cycle is modified to incorporate multistage compression with intercooling, multistage expansion with reheating, and regeneration without changing the pressure limits of the cycle. As a result of these modifications,
 - (a) Does the net work output increase, decrease, or remain the same?
 - (b) Does the back work ratio increase, decrease, or remain the same?
 - (c) Does the heat rejected increase, decrease, or remain the same?
- 8. (a) Can the enthalpy values determined from a psychrometric chart at sea level be used at higher elevations? Why? (5 %)
 - (b) What is the value of the Clapeyron equation in thermodynamics? (5%)
- 9. (a) Express the increase of entropy principle for chemically reacting systems. (5 %)
 - (b) How are the absolute entropy values of ideal gases at pressures different from 1 atm determined? (5 %)
- 10. (10%) What is cogeneration? Sketch a cogeneration plant and describe its operation.
- 11. (5 %) If the equilibrium constant for the reaction $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ is K, what is the equilibrium constant for the reaction $2H_2O \rightarrow 2H_2 + O_2$ at the same temperature?
- 12. (5 %) What is the importance of the van't Hoff equation?