國立中央大學九十三學年度碩士班研究生入學試題卷 共 乙頁 第 / 頁

所別:機械工程學系碩士班內,戊組 科目:流體力學

- 1. Plot the relation between τ (shear stress) and $\dot{\gamma}$ (strain rate) for the Newtonian and the non-Newtonian fluid. (4%)
- 2. Explain the following terms: (8%)(a) pressure gradient, (b) kinematic viscosity, (c) continuum fluid, (d) Bernoulli equation.
- 3. A steady, incompressible (density= ρ) flow with constant volumetric flow rate Q is accelerated through a nozzle of length L and diameter D(x) ($D(x)=D_o/(1+x/L)^{0.5}$). Assuming one-dimensional flow and a uniform velocity over any cross section perpendicular to the flow and the pressure at the inlet (at D_o) to the nozzle is p_o . Find the fluid acceleration and pressure at any position in the nozzle. (10%)

4. A square rod (width=a) with length L (specific weight= γ_r) is floating on water (specific weight= γ_w). What is the minimum weight W that must be added to one end to have the rod float vertically? Assume that the volume of the weight is negligible. (13%)

- 5. If for a steady flow, streamlines are converging straight lines, which of the following statements are true? (4%)
 - (a) Only convective normal acceleration is present.
 - (b) Only convective tangential acceleration is present.
 - (c) Both convective normal and tangential accelerations are present.
 - (d) No local acceleration is present.
 - (e) There is no acceleration.
- 6. For two-dimensional flows, which of the following statements are true? (4%)
 - (a) If ϕ exists, ψ will also exist.
 - (b) If ψ exists, the flow will be either rotational or irrotational.
 - (c) If ϕ exists, the flow will be either compressible or incompressible.
 - (d) If ψ exists, the flow will be both irrotational and incompressible.
 - (e) If ϕ exists, the flow will be both irrotational and incompressible.
 - (ϕ : velocity potential, ψ : stream function)

7. Explain how fluid pressure, density and velocity vary through a converging duct for an isentropic flow of an ideal gas when the flow is (a) subsonic, (b) supersonic. (6%)

注:背面有試題意:

國立中央大學九十三學年度碩士班研究生入學試題卷 共 2 頁 第 2 頁

所別:機械工程學系碩士班內,戊組 科目:流體力學

8. A flat plate is hinged at one side to the floor and held at a small angle θ_0 relative to the floor. The entire system is submerged in a liquid of density ρ . At t = 0, a vertical force is applied and adjusted continually so that it produces a constant rate of decrease of the plate angle

- θ , $-d\theta/dt = \omega$ = constant. Consider the flow is incompressible and inviscid.
- (a) Derive an expression for the velocity u(x,t) at position x and time t. (7%)
- (b) Assuming the plate has negligible mass, find the horizontal force F(t) exerted by the hinge on the floor. (10%) (Obtain the answers of (a) and (b) based on $\theta_0 \ll 1$)
- 9. A fluid of density ρ and viscosity μ flows through a long pipe of diameter D at the volume rate Q. Assume the flow is steady and fully developed in the mean.
 - (a) Demonstrate the mean pressure gradient in the direction of flow has the form $dP/dx = (\rho Q^2/D^5) \cdot \phi(\rho Q/\mu D). \qquad (7\%)$
 - (b) Further assume the flow is laminar, simplify the above form without knowing any possible expressions of ϕ . (5%)
 - (c) Using the force balances, explain the difference between (a) and (b). (5%)
- 10. The steady, two-dimensional, incompressible Navier-Stokes equations are

$$\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

$$\rho\left(u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial y} + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

Consider a two-dimensional incompressible laminar boundary-layer flow, as sketched below.

(a) Write down the appropriate boundary-layer equations for this flow. (4%

(d) the skin-friction coefficient $2\tau_w/\rho U_\infty^2$. (4%)

