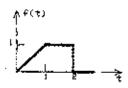
國立中央大學九十一學年度碩士班研究生入學試題卷

所別: 機械工程學系法,已經 科目: 工程數學 共 / 頁 第 / 頁

1. (a) Solve the initial value problem


$$ay'' + by = 0, \quad y(0) = 0, \quad y'(0) = 1,$$

where a and b are constants, but $a \neq 0$. (12%)

(b) Find a <u>basis</u> of solution of the differential equation. (Show the details of your work.) (8%)

$$x^2y'' + 3xy' + v = 0$$

(c) Find the Laplace transforms of the following function. (Show the details of your work.) (5%)

- 2. (a) Evaluate $\oint_{c} \frac{e^{z}}{(z-1)(z+4)} dz$, where c is the circle |z|=3 described in the positive direction. (8%)
 - (b) Evaluate $\oint_z z^0 \sin(1/z) \ dz$, where c is the circle $\{z\} = 1$ described in the positive direction. (7%)

(c) Evaluate
$$\int_0^{2\pi} \frac{\cos 2\theta}{5 - 4\cos \theta} d\theta.$$
 (10%)

- 3. (a) Find the similarity transformation $A = P\Lambda P^{-1}$, where $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and Λ is a diagonal matrix.
 - (b) Consider a system of differential equations $\frac{dy}{dx} = Ay$ subject to the initial condition y(0) = b, where the matrix A is given as above, $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. We can solve this problem by taking the iterative procedure:

$$y^{(0)} = b,$$

$$y^{(1)} = b + \int_0^x A y^{(0)} d\xi = b + xAb,$$

$$y^{(2)} = b + \int_0^x A y^{(1)} d\xi = b + xAb + \frac{(xA)^2}{2!}b,$$

$$\vdots$$

$$y^{(n)} = \left[I + \frac{xA}{1!} + \frac{(xA)^2}{2!} + \dots + \frac{(xA)^n}{n!}\right]b,$$

and $y^{(n)} \rightarrow y$ as $n \rightarrow \infty$. Obtain y_i and y_2 by the iteration method and the similarity transformation you have got. Show the details of your work. (Hint: think about the Taylor series expansion for e^t about t = 0.)

4. By the method of separation of variables, find the solution u(x,y) of the Poisson equation

$$u_{xx} + u_{yy} = \cos(\pi y),$$

in the semi-infinite strip $0 \le x < \infty, 0 \le y \le 1$, such that

$$u(0, y) = y, \quad u_y(x, 0) = u_y(x, 1) = 0.$$
 (25%)

