以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:56 、訪客IP:3.128.201.207
姓名 簡炳林(Biing-Lin Jang) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 二氧化鈦薄膜之製備與分析
(Manufacture and Analysis of Titanium Dioxide thin film)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 摘要
微機電系統目前是世界上每一個家積極投入的一個新領域,其主要係利用微技術、系統技術及材料與效應技術,製造出微感測器、訊號處理機及微引動器等。本文的研究主要是在探討以熱氧化法製成二氧化鈦的材料特性與分析,另外亦探討以微機電的製程技術,研究半導體感測器對蛋白質的感測性能。本實驗考慮的參數有: 溫度,流量,壓力。其中又以溫度,流量對製程的影響較大,壓力的影響則較小。製成二氧化鈦薄膜之後,再對二氧化鈦薄膜作電阻率量測,接觸角量測,X光繞射光譜(XRD)分析,紅外線光譜(FTIR)之分析。經過電阻率之量測,若鈦直接長在矽基板上,則電阻率隨O2流量的增加而增加,另外鈦直接長在矽基板上,則電阻率隨溫度的增加而增加,但在600℃有例外。乃是有形成TiSi2。若鈦長在oxide上,與鈦直接長在矽基板上比較,則氧化後,前者之電阻率一定比後者高。另外有作接觸角量測,乃是蛋白質物質若要與二氧化鈦薄膜發生反應,則二氧化鈦薄膜必須是親水性,否則若是疏水性,則無法發生反應。 經過量測,PVD的方法較CVD的方法有較小之接觸角,顯示PVD法有較佳之親水性。而X光繞射光譜分析,在2Θ=25°之處,有anatase(101)之peak出現,在2Θ=48°之處,有anatase(200)之peak出現,在2Θ=54°之處,有anatase(105)之peak出現,最後作FTIR之分析,CVD方法較PVD方法有較強之peak。溫度越高,不管是PVD或CVD方法,皆有較強之peak。摘要(英) Microelectromechanical systems is a new field in the world now,it use micro-technology,system technology,materials and effect technology,
manufacture microsensors,signal processor,and microactuators.The research I make is to study
"use thermal oxidation method to form titanium
dioxide and its materials character and analysis"
.The experiment parameters including:temperature,
oxygen flow,pressure.The main parameters are
temperature,oxygen flow ,and pressure affects small.When titanium dioxide thin film is formed,
furthermore,to measure resistivity,measure contact
angle,analyze XRD,analyze FTIR.After resistivity
measurement,if titanium deposit on silicon substrate directly,then resistivity increases when
oxygen flow increases.If titanium deposit on silicon substrate directly,then resistivity increases when temperature increases,but sometimes
has exception when temperature is 600℃,because has formed titanium silicide.If titanium deposit on oxide,compare with titanium deposit on silicon substrate,after oxidation,the former has higher
resistivity.According to contact angle measurement
,if protein can react with titanium dioxide,the protein must be hydrophilic,otherwise,if it is
hydrohobic,it can`t react with titanium dioxide.
After measurement,the PVD method has smaller contact angle than CVD method.It shows PVD method
has better hydrophilic.According to XRD analysis,
when 2Θ=25°,it has anatase(101)peak,when 2Θ=48°,it has anatase(200)peak,when 2Θ=54°,it has anatase(105)peak.Finally,after FTIR analysis,
CVD method has stronger peak than PVD method,when
temperature increase,no matter PVD method or CVD
method,they have stronger peak.關鍵字(中) ★ 二氧化鈦
★ 接觸角
★ 親水性
★ 微機電關鍵字(英) ★ contact angle
★ titanium dioxide論文目次 總目錄
摘要---------------------------------------------------------------------------I
總目錄------------------------------------------------------------------------II
圖目錄-------------------------------------------------------------------------V
表目錄------------------------------------------------------------------------IX
第一章 緒論------------------------------------------------------------------1
1.1 研究動機-------------------------------------------------------------------1
第二章 文獻回顧----------------------------------------------------------------2
2.1 微機電系統-----------------------------------------------------------------2
2.1.1 微機電系統之定義---------------------------------------------------------2
2.1.2 微機電系統之由來---------------------------------------------------------3
2.1.3 微機電系統之製造技術-----------------------------------------------------3
2.1.4 微機電系統之優點---------------------------------------------------------4
2.2 感測器介紹-----------------------------------------------------------------5
2.3 感測器分類- --------------------------------------------------------------7
2.3.1壓阻式感測器--------------------------------------------------------------7
2.3.2諧振式感測器--------------------------------------------------------------8
2.3.3電容式感測器--------------------------------------------------------------8
2.3.4光纖式感測器--------------------------------------------------------------9
2.3.5生物感測器---------------------------------------------------------------10
2.4二氧化鈦介紹---------------------------------------------------------------12
2.4.1二氧化鈦性質-------------------------------------------------------------12
2.4.2 TiOx之相圖分析----------------------------------------------------------17
2.5 文獻回顧------------------------------------------------------------------21
第三章 實驗方法---------------------------------------------------------------27
3.1 實驗流程------------------------------------------------------------------27
3.2 二氧化鈦之製備------------------------------------------------------------28
3.2.1 Si wafer之清洗----------------------------------------------------------28
3.2.2 爐管沉積 silicon dioxide薄膜--------------------------------------------30
3.2.3 以金屬物理氣相沉積系統(Metal PVD)或金屬化學氣相沉積系統(Metal CVD)沉積鈦薄膜----------------------------------------------------------------------------33
3.2.4 以退火爐管將鈦氧化成二氧化鈦--------------------------------------------34
3.3 以電子迴旋共振式電漿輔助化學氣相沉積系統(ECR-CVD)將鈦氧化成二氧化鈦-------35
3.4 元件之製作----------------------------------------------------------------38
3.4.1 元件之製作步驟----------------------------------------------------------38
3.4.2 光罩之製作--------------------------------------------------------------40
3.5 實驗儀器------------------------------------------------------------------42
3.5.1 金屬膜四點探針量測儀(Four point probe)----------------------------------42
3.5.2 X光繞射儀(XRD)---------------------------------------------------------42
3.5.3 接觸角量測系統(contact angle system)------------------------------------43
3.5.4 紅外線光譜儀(FTIR)------------------------------------------------------45
3.5.5 薄膜測厚儀(n & k analyzer)----------------------------------------------45
3.5.6 金屬物理氣相沉積系統(Metal-PVD)----------------------------------------46
3.5.7 清洗蝕刻工作台(Wet Bench)-----------------------------------------------46
3.5.8 高溫及低壓爐管(Furnace and LPCVD)---------------------------------------47
3.5.9 後段真空退火爐管--------------------------------------------------------47
3.5.10電子迴旋共振式電漿輔助化學氣相沉積系統(ECR-CVD)-------------------------47
第四章 結果與討論------------------------------------------------------------49
4.1 電阻率(PVD Ti/Si氧化成 TiO2/Si,O2流量100sccm)----------------------------50
4.2 電阻率之比較(PVD Ti/Si氧化成 TiO2/Si,O2流量500sccm)----------------------56
4.3 電阻率(PVD Ti/SiO2/Si氧化成 TiO2/SiO2/Si,O2流量500sccm)------------------59
4.4 電阻率之比較(PVD Ti氧化成TiO2,O2:500sccm)--------------------------------62
4.5 電阻率之比較(Ti/SiO2/Si,加熱氧化成 TiO2/SiO2/Si)-------------------------65
4.6 接觸角量測----------------------------------------------------------------68
4.7 X光繞射光譜(XRD)分析-----------------------------------------------------72
4.8 FTIR之量測---------------------------------------------------------------76
第五章 結論-------------------------------------------------------------------81
參考文獻----------------------------------------------------------------------83
圖目錄
圖2.1 感測器的定義-------------------------------------------------------------5
圖2.2主動式感測器與被動式感測器之比較------------------------------------------6
圖2.3壓阻式感測器--------------------------------------------------------------7
圖2.4壓阻式感測器--------------------------------------------------------------7
圖2.5諧振式感測器--------------------------------------------------------------8
圖2.6諧振式感測器--------------------------------------------------------------8
圖2.7電容式感測器--------------------------------------------------------------9
圖2.8光纖式感測器-------------------------------------------------------------10
圖2.9 生物感測器--------------------------------------------------------------11
圖2.10金紅石(TiO2)的結構,包含兩個TiO6 八面體的排列---------------------------13
圖2.11銳鈦礦(TiO2)的結構,包含兩個TiO6 八面體的排列---------------------------13
圖2.12金紅石(TiO2)的晶格結構--------------------------------------------------14
圖2.13銳鈦礦(TiO2)的晶格結構--------------------------------------------------14
圖2.14 Ti-O之相圖-------------------------------------------------------------18
圖2.15 Ti-O系統的低溫濃縮相圖-------------------------------------------------19
圖2.16 TiO2之SEM圖,其中O2/(Ar+O2)比:(A)10%(B)23%(C)41%濺鍍30分鐘,工作壓力2X10-3Torr,直流功率399W-----------------------------------------------------------21
圖2.17 TiO2之X光繞射光譜圖(XRD)-----------------------------------------------22
圖2.18 TiO2之表面形態(左)及斷面圖(右)-----------------------------------------23
圖2.19 TiO2之X光繞射光譜圖----------------------------------------------------23
圖3.1實驗流程圖---------------------------------------------------------------27
圖3.2 Si wafer清洗流程圖------------------------------------------------------28
圖3.3爐管沉積 silicon oxide薄膜之流程圖---------------------------------------30
圖 3.4 以退火爐管將鈦氧化成二氧化鈦之流程圖-----------------------------------34
圖3.5 以電子迴旋共振式化學氣相沉積系統(ECR-CVD)將鈦氧化成二氧化鈦-------------35
圖3.6 光罩1-------------------------------------------------------------------40
圖3.7 光罩2-------------------------------------------------------------------40
圖3.8 光罩3-------------------------------------------------------------------41
圖3.9 表面接觸角--------------------------------------------------------------44
圖4.1.1 不同厚度之鈦薄膜電阻率----------------------------------------------52
圖4.1.2 不同厚度鈦薄膜再現性-------------------------------------------------52
圖4.1.3 鈦薄膜一週前、一週後之電阻率----------------------------------------52
圖4.1.4 鈦薄膜真空退火前、後之電阻率----------------------------------------52
圖4.1.5 5nm鈦薄膜經氧化後之電阻率-------------------------------------------53
圖4.1.6 10nm鈦薄膜經氧化後之電阻率------------------------------------------53
圖4.1.7 30nm鈦薄膜經氧化後之電阻率------------------------------------------53
圖4.1.8 不同厚度鈦薄膜經400℃氧化後之電阻率--------------------------------54
圖4.1.9 不同厚度鈦薄膜經500℃氧化後之電阻率--------------------------------54
圖4.1.10 不同厚度鈦薄膜經600℃氧化後之電阻率--------------------------------54
圖4.1.11 不同厚度鈦薄膜經氧化後之電阻率--------------------------------------55
圖4.2.1 5nm鈦薄膜經氧化後之電阻率-------------------------------------------56
圖4.2.2 10nm鈦薄膜經氧化後之電阻率------------------------------------------57
圖4.2.3 30nm鈦薄膜經氧化後之電阻率------------------------------------------57
圖4.2.4 不同厚度鈦薄膜經400℃氧化後之電阻率---------------------------------57
圖4.2.5 不同厚度鈦薄膜經500℃氧化後之電阻率---------------------------------58
圖4.2.6 不同厚度鈦薄膜經600℃氧化後之電阻率---------------------------------58
圖4.3.1 不同厚度之鈦薄膜電阻率----------------------------------------------59
圖4.3.2 5nm鈦薄膜經氧化後之電阻率-------------------------------------------60
圖4.3.3 10nm鈦薄膜經氧化後之電阻率------------------------------------------60
圖4.3.4 30nm鈦薄膜經氧化後之電阻率------------------------------------------60
圖4.3.5 不同厚度鈦薄膜經400℃氧化後之電阻率--------------------------------61
圖4.3.6 不同厚度鈦薄膜經500℃氧化後之電阻率--------------------------------61
圖4.3.7 不同厚度鈦薄膜經600℃氧化後之電阻率--------------------------------61
圖4.4.1 5nm鈦薄膜經氧化後之電阻率-------------------------------------------62
圖4.4.2 10nm鈦薄膜經氧化後之電阻率------------------------------------------63
圖4.4.3 30nm鈦薄膜經氧化後之電阻率------------------------------------------63
圖4.4.4 不同厚度鈦薄膜經400℃氧化後之電阻率--------------------------------63
圖4.4.5 不同厚度鈦薄膜經500℃氧化後之電阻率--------------------------------64
圖4.4.6 不同厚度鈦薄膜經600℃氧化後之電阻率--------------------------------64
圖4.5.1 5nm鈦薄膜經氧化後之電阻率-------------------------------------------65
圖4.5.2 10nm鈦薄膜經氧化後之電阻率------------------------------------------66
圖4.5.3 30nm鈦薄膜經氧化後之電阻率------------------------------------------66
圖4.5.4 不同厚度鈦薄膜經400℃氧化後之電阻率--------------------------------66
圖4.5.5 不同厚度鈦薄膜經500℃氧化後之電阻率--------------------------------67
圖4.5.6 不同厚度鈦薄膜經600℃氧化後之電阻率--------------------------------67
圖4.6.1 TiO2之接觸角--------------------------------------------------------69
圖4.6.2 TiO2之接觸角--------------------------------------------------------69
圖4.6.3 5nm鈦薄膜經氧化後之接觸角-------------------------------------------69
圖4.6.4 10nm鈦薄膜經氧化後之接觸角------------------------------------------70
圖4.6.5 30nm鈦薄膜經氧化後之接觸角------------------------------------------70
圖4.6.6 不同厚度鈦薄膜經400℃氧化後之接觸角--------------------------------70
圖4.6.7 不同厚度鈦薄膜經500℃氧化後之接觸角--------------------------------71
圖4.6.8 不同厚度鈦薄膜經600℃氧化後之接觸角--------------------------------71
圖4.7.1 TiO2之 X光繞射圖(PVD Ti 30nm,500℃氧化)--------------------------73
圖4.7.2 TiO2之 X光繞射圖(PVD Ti 5nm,400℃氧化)---------------------------73
圖4.7.3 TiO2之 X光繞射圖(PVD Ti 10nm,600℃氧化)--------------------------74
圖4.7.4 TiO2之 X光繞射圖(CVD Ti 5nm,600℃氧化)---------------------------74
圖4.7.5 TiO2之 X光繞射圖(CVD Ti 30nm,600℃氧化)--------------------------75
圖4.8.1 TiO2之紅外線光譜圖(PVD Ti 5nm ,600℃氧化)------------------------77
圖4.8.2 TiO2之紅外線光譜圖(PVD Ti 30nm,600℃氧化)------------------------77
圖4.8.3 TiO2之紅外線光譜圖(CVD Ti 10nm ,500℃氧化)-----------------------77
圖4.8.4 TiO2之紅外線光譜圖(FTIR)比較----------------------------------------78
圖4.8.5 TiO2之紅外線光譜圖(FTIR)比較----------------------------------------78
圖4.8.6 TiO2之紅外線光譜圖(FTIR)比較----------------------------------------78
圖4.8.7 TiO2之紅外線光譜圖(FTIR)比較----------------------------------------79
圖4.8.8 TiO2之紅外線光譜圖(FTIR)比較----------------------------------------79
圖4.8.9 TiO2之紅外線光譜圖(FTIR)比較----------------------------------------79
圖4.8.10 TiO2之紅外線光譜圖(FTIR)比較---------------------------------------80
表目錄
表2.1 Ti-O 化合物的描述------------------------------------------------------15
表2.2 TiO2(Rutile, Brookite, Anatase)的性質----------------------------------15
表2.3 二氧化鈦之接觸角-------------------------------------------------------24
表2.4 快速熱氧化法之製程條件-------------------------------------------------25
表2.5 鈦及二氧化鈦層厚度之量測-----------------------------------------------25參考文獻 參考文獻
(1)S.M.Sze ,Semiconductor sensors (1994).
(2)S.Schiller, “Reactived d.c sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films”,Thin Solid Films,63,369-375(1979).
(3)K.S.Yeung and Y.W.Lan, “A simple chemical vapor deposition method for depositing thin TiO2 films”,Thin Solid Films,109,169-178(1983).
(4)Takashi Fuyuki and Hiroyuki Matsunami ,“Electronic properties of interface between Si and TiO2 deposited at very low temperature”,Japanese Journal of Applied Physics,25,1288-1291(1986).
(5)H.J.Frenck,“deposition of TiO2 thin films by plasma enhanced decomposition of tetraiopropya titanate” ,Thin Solid Films,201,327-335(1991).
(6)Jun Tamaki,Chizuko Naruo et al,“Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation”,Sensors and Actuators ,B 83 ,190-194(2002).
(7)C.-K.Jung,B.-C.Kang et al,“Growth of TiO2 thin films on Si(100) and Si(111) substrates using molecular precursor by high-vacuum MOCVD and comparison of growth behavior and structural properties”, Journal of Crystal Growth,235,450-456(2002).
(8)home.kimo.com.tw/lw0309/property003.htm.
(9)Madou,Fundamentals of MICROFABRICATION.
(10)吳東權等人,微機電系統之技術現況與發展(1994).
(11)www.Microsystems.metu.edu.tr/piezops/piezops.html.
(12)S.Zappe,E.Obermier et al“Piezoresistive High Pressure Sensor Based on 3C-SiC-on-SOI for oil well Logging Applications”.
www-mat.ee.tu-berlin.de/papers/public00/pdf00/zap00_3.pdf.
(13)Peter Enokson et al “Resonant fluid density and coriolis mass flow sensor”,www.s3.kth.se/mst/research/projects/density.html.
(14)www.ee.ucla.edu/~eyre/res/rmms.html.
(15)www.ipc.uni-tuebingen.de/weimar/research/maintopics/gassensors/
transducers/capacitance.html.
(16)www.sb477.tu-bs.de/English/tp_c1/tpc1.html.
(17)吳宗正,生物感測器.
(18)www.bd.com/international/products/ss-oxygenbiosensor.pdf
(19)Yasutaka Takahashi,“Rutile growth at the surface of TiO2 films deposited by vapour-phase decomposition of isopropyl titanate ”J.Chem.Soc.Faraday Trans,I,81,3117-3125(1985).
(20)Feng Zhang,“Highly oriented rutile-type TiO2 films synthesiszed by ion beam enhanced deposition”,J.Vac.Sci.Technol.A15,1824-1827(1997).
(21)E.T.Fitsgibbons,K.J.Sladek and W.H.Hartwig,“TiO2 films properties as a function of processing temperature”,J.Electrochem.Soc.:Solid-State Science and Technology,119,735-739(1972).
(22)“University of Colorado,Mineral Structure Data,http://ruby.Colorado.
edu/~smyth/min/minerals.html”.
(23)K.G .Geraghty and L.F.Donaghey,“Preparation of suboxide in the Ti-O system by reactive sputtering”, Thin Solid Films,40,375-383(1977).
(24)鄭智文,“化學氣相沉積二氧化鈦薄膜及添加雜質之效應”,成功大學碩士論文(1994).
(25)黃世仁,“高頻磁控濺鍍在矽晶圓上成長TiO2及Y2O3薄膜”成功大學碩士論文(1994).
(26)顧翼東,化學辭典.
(27)T.Leistner,K.Lehmbacher et al,“MOCVD of titanium dioxide on the basis of new precursors”,Journal of Non-Crystalline Solids,303,64-68(2002).
(28)Wei Guo,John,F,Porter et al,“Characterization of ultrafine titanium dioxide powders produced by vapor phase hydrolysis of titanium tetraisopropoxide”,
J.Aerosol Sci.Vol.28,Suppl.1,s485-s486(1997).
(29)Never Kaliwoh,Jun-Ying et al,“Titanium dioxide films prepared by photo-induced sol-gel processing using 172 nm excimer lamps”,Surface and Coatings Technology, 125,424-427(2000).
(30)B.R.Weinberger and R.B.Garber ,Appl.Phys.Lett.,66(18),2409-2411(1995).
(31)J.D.DeLoach and C.R.Aita,J.Vac.Sci.Technol.A,16(3),1963-1968(1998).
(32)Phillip G. Wahlbeck and Paul W.Gilles,“reinvestigation of the phase diagram for the system titanium-oxygen”,Journal of The American Ceramic Society,49,180-183(1966)
(33)T.H.Schofield and A.E.Bacon,“constitution of the titanium-oxygen alloys
in the range 0-35 weight per cent.oxygen”,J,lnst.Metals,84,47-53(1955-56).
(34)E.S.Bumps,H.D.Kessler and M.Hansen,“the titanium-oxygen system”,Trans.Am.Soc.Metals,45,1008-1028(1953).
(35)Hideo Nishimura and Hirozo Kimura,“Titanium-oxygen-carbon system”,J.Japan lnst.Metals,20,524-528(1954).
(36)Bo Holmberg,“disorder and order in solid solutions of oxygen in α-Titanium”,Acta.Chem.Scand,16,1245-1250(1962).
(37)E.S .Makarov and L.M.Kuznetsov,“crystal structure and chemical nature of lower oxides of Titanium TiO0-0.48”,Zh,Strukt.Khim,1,170-177(1960).
(38)F.R.L.Shoening and F.Witt,“advances in X-ray analysis”,Plenum Press,New York,6,136(1963).
(39)L l Kornilov and V.V.Glazova,“Bond strength characteristic of the compounds Ti6O and Ti3O formed from α solid solution of the Ti-O system”,Dokl.Akad.Nauk SSSR,150,1-16(1963).
(40)B.F.Naylor,“High temperature heat contents of TiO,Ti2O3,Ti3O5, and TiO2”,J.Am.Chem.Soc,68,1077-1080(1946).
(41)Sten Anderson,“Phase-analysis studies in the titanium –oxygen system”,Acta Chem,Scand,11,1641-1652(1957).
(42)K.G.Geraghty and L.F Donaghey,“Preparation of suboxide in the Ti-O system by reactive sputtering”,thin solid films,40,375-383(1977).
(43)Susan Searle,http://www.icinnovations.co.uk/inviro/datasheets/
titanium.html.
(44) Seon-Hwa Kim & Yong-Lak Choi et al,“Influence of sputtering parameters on microstructure and morphology of TiO2 thin films”,Materials Letters 57,343-348(2002).
(45) S.G Springer & P.E Schmid et al,“Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering”,Surface and Coatings Technology,151-152,51-54,(2002).
(46)Tae-Kyung Won,“Compositional analysis and capacitance-voltage properties of TiO2 films by low pressure metal-organic chemical vapor deposition”,J.Electrochem.Soc,139,3284-3288(1992).
(47)Won Gyu Lee,“Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition”,Thin Solid Films 237,105(1994).
(48)G C’ordoba,J.Padilla et al,“Influence of manganese ions on the anatase-rutile phase transition of TiO2 prepared by the sol-gel process”,Materials Letters 54,397-402(2002).
(49) E.Honbo & M.Miyata et al,“Preparation of TiO2 thin films by sputtering applying electron cyclotron resonance plasma produced in arched magnetic mirrors”,Vacuum 66,263-267(2002).
(50)王升平,“四氯化鈦製作奈米二氧化鈦透明結晶膜及其應用”,中央大學碩士論文(1998).
(51)郭彥廷,“導電高分子與二氧化鈦之奈米複合材料的合成與性質探討”,中央大學碩士論文(2002).
(52)G.P.Burns,“Titanium dioxide dielectric films formed by rapid thermal oxidation”,J.Appl.Phys,65(5),1 March (1989).指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2003-7-9 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare