博碩士論文 90323035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.12.123.41
姓名 陳英昌(Ying-Chang Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋁合金中氧化膜的生長與分解
(The Growth and Decomposition of Oxide Films for Aluminum Alloys)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要在探討加熱持溫過程中,鋁合金對氧化膜生長與分解的影響。實驗試片以「三明治形式」製成,分為上部試片、中間夾層、下部試片等三層。上部試片合金成份分別為純鋁(99.999%)、商用純鋁(99.82%)、Al-7%Si、Al-13%Si、Al-0.5%Mg、A356.2、A356.2-high Sr等七種;中間夾層是鋁表面在高溫下所成長生成的氧化膜;下部試片為純鋁(99.999%)。將上、下部試片結合,放入氬氣保護氣氛下的加熱爐中,從室溫加熱至750℃後作持溫的時間變化(12、15、20分鐘),以比較合金成份及時間的變化對氧化膜生長與分解的影響。
實驗結果證實在高溫(610℃)自然成長的氧化膜為γ-Al2O3。由於受高溫鋁液的滲入、侵蝕,氧化膜會被分解,散開於鋁基地內;持溫時間加長,氧化膜被侵蝕、分解更嚴重,最後上、下部試片會完全融合一起。
對於合金成份的影響:實驗試片含有Si元素時,Si會吸附於氧化膜(氧化鋁)上,且有些Si會隨鋁液擴散進入膜內;試片中含有Mg元素時,Mg隨鋁液擴散進入氧化膜內並迅速與Al2O3反應結合;試片含有Sr、Si、Mg元素時,Sr擴散至共晶Si上,阻礙Mg擴散並遲緩(或隔絕)和氧化膜反應結合。若試片中Si的含量提高,Si吸附於氧化膜上的量會顯著增加,並延緩高溫鋁液的滲入氧化層內、增加鋁液侵蝕分解氧化膜的時間,使得中間夾層的氧化膜在高溫持溫下會生長,使氧化層增厚。
摘要(英) The purpose of the study is aimed at investigating the difference of growth and decomposition of aluminum oxide film affected by aluminum alloys during adding heat and holding temperature. Experimental specimens are made by “sandwich type”, divided into up-specimen, middle layer and down-specimen. The alloys used in the up-specimen are pure Al (99.999%), commercial pure Al (99.82%), Al-7%Si alloy, Al-13%Si alloy, Al-0.5%Mg alloy, A356.2 alloy, A356.2-high Sr alloy, respectively. Middle layer is oxide films grown on Al surface at high temperature. Down-specimen is pure Al (99.999%). Make up-specimen and down-specimen combine, and place the specimen in heat furnace under argon atmosphere. The heat furnace heats from room temperature to 750℃ and then holds temperature, and then the specimen is holded by change of time (12,15,20 minutes) to compare with growth and decomposition of oxide films affected by alloy components and change of time.
Experimental results prove that growing oxide films naturally at high temperature (610℃) is γ-Al2O3. Because permeated and corroded by Al liquid,aluminum oxide is decomposed and scatters Al substrates. When holding time increases, aluminum oxide is corroded and decomposed more seriously, and finally up-specimen and down-specimen fuse together.
For effects of alloy components: the specimen includes Si element, Si adheres to oxide films(Al2O3) and several Si diffuse into films by Al liquid. The specimen includes Mg element, Mg diffuses into oxide films by Al liquid, combines with and react to films rapidly. The specimen includes Sr, Si, and Mg elements, Sr diffuses into eutectic Si and hinders which Mg diffuses into and combines with oxide films. If Si quantity in the specimen increases, the amounts of Si adhering oxide films increase obviously. Further, the action delays which Al liquid permeates aluminum oxide, and increases corroded and decomposed time of aluminum oxide. Therefore, oxide in the middle layer grows at high holding temperature and thickens.
關鍵字(中) ★ A356.2合金
★ 生長
★ 分解
★ 鋁鎂合金
★ 鋁矽合金
★ 氧化鋁
關鍵字(英) ★ Aluminum oxide
★ Al-Si alloy
★ Al-Mg alloy
★ A356.2 alloy
★ Growth
★ Decomposition
論文目次 總目錄
摘要-------------------------------------I
Abstract--------------------------------II
總目錄----------------------------------IV
表目錄---------------------------------VII
圖目錄--------------------------------VIII
第一章 前言----------------------------1
第二章 文獻回顧------------------------2
2.1 鋁合金的簡述-----------------------2
2.1.1 鋁合金的類型-------------------2
2.1.2 鋁-矽-鎂(銅)合金(3XX.X)----3
2.2 金屬的凝固特性---------------------4
2.2.1 金屬凝固形態-------------------4
2.2.2 凝固補充-----------------------4
2.2.3 氣孔的形成---------------------5
2.3 氧化鋁的生成-----------------------6
2.3.1 氧化鋁的種類-------------------6
2.3.2氧化鋁的形成--------------------8
2.3.3 ESCA診斷氧化鋁膜---------------9
2.4 矽的成長及吸附--------------------10
2.4.1共晶矽成長機構-----------------10
2.4.2 矽的吸附----------------------11
2.5 調質作用的影響--------------------12
2.5.1調質作用及機構-----------------12
2.5.2調質元素的簡介-----------------13
第三章 實驗方法與步驟-----------------15
3.1 實驗目的--------------------------15
3.2 實驗材料--------------------------15
3.2.1 純鋁材料----------------------15
3.2.2 鋁矽合金----------------------15
3.2.3 鋁矽鎂合金--------------------16
3.2.4 鋁鎂合金----------------------16
3.3 試片規格--------------------------16
3.4 實驗設備--------------------------16
3.5 實驗步驟--------------------------18
第四章 結果與討論----------------------------------------------------20
4.1 氧化膜的分析-----------------------------------------------------20
4.1.1 掃描式電子顯微鏡(SEM)的觀察----------------------------------20
4.1.2 XRD的檢測----------------------------------------------------20
4.1.3 ESCA的檢測---------------------------------------------------21
4.2 氧化膜的探討(I):純鋁(99.999%)的影響---------------------------22
4.2.1 純鋁(99.999%)|γ-氧化鋁膜|γ-氧化鋁膜|純鋁(99.999%)---------22
4.2.2 純鋁(99.999%)|水合氧化膜|γ-氧化鋁膜|純鋁(99.999%)----------23
4.2.3 純鋁(99.999%)(400號砂紙粗磨)|γ-氧化鋁膜|純鋁(99.999%)------23
4.3 氧化膜的探討(II):鋁-矽合金的影響-----------------------------24
4.3.1 商用純鋁(99.82%)(400號粗磨)|γ-氧化鋁膜|純鋁(99.999%)-------24
4.3.2 Al-7%Si合金(400號粗磨)|γ-氧化鋁膜|純鋁(99.999%)-----------24
4.3.3 Al-13%Si合金(400號粗磨)|γ-氧化鋁膜|純鋁(99.999%)----------25
4.4 氧化膜的探討(III):鋁-鎂合金的影響----------------------------25
4.5 氧化膜的探討(IV):鋁-矽-鎂合金的影響-------------------------26
4.5.1 A356.2合金(400號粗磨)|γ-氧化鋁膜|純鋁(99.999%)-------------26
4.5.2 A356.2-high Sr合金(400號粗磨) |γ-氧化鋁膜|純鋁(99.999%)-----27
4.6 總討論-----------------------------------------------------------28
4.6.1 實驗儀器檢測的探討-------------------------------------------28
4.6.2 氧化膜的總探討-----------------------------------------------28
第五章 結論----------------------------------------------------------32
參考文獻---------------------------------------------------------------33
附錄 化學分析電子儀(ESCA)檢測,2p與2p3的關係--------------------------110
參考文獻 1. 李勝隆,鑄鋁之熔煉實務要旨,鋁建材及合金技術研討會(工材所),民國86年4月。
2. I. J. Polmear, Light Alloys:Metallurgy of the Light Metals, 3rd ed.,
London New York:Arnold, (1995).
3. Lennart Backerud, Guocai Chai, Jarmo Tamminen, Solidification
Characteristics of Aluminium Alloys Vol. 2:Foundry alloys, The American
Foundrymen's Society, Inc., (1990).
4. J. E. Gruzleski, B. M. Closset, The Treatment of Liquid Aluminum-Silicon
Alloys, The American Foundrymen’s Society, Inc., (1990).
5. 吳聲君、譚安宏、李勝隆、林於隆,微量銻對含鍶A356鋁合金之微結構及機械性質的
影響,鑄工第22卷第4期(第91期)民國85年12月。
6. C. R. Loper, Jr., Fluidity of Aluminum-Silicon Casting Alloys, AFS
Transactions, 100 (1992) 553-538.
7. 吳穎昌,微量Sr與Be對319鑄鋁合金微縮孔及凝固收縮之影響,國立中央大學機械工程
學研究所碩士班論文,桃園,民國86年6月。
8. Merton C. Flemings, Solidification Processing, New York:McGraw-Hill, (1974).
9. K. Kuba, R. D. Pehlk, Effects of Solidification Condition on Mechanical
Behavior of Al Castings, AFS Transaction, 78 (1970) 753-756.
10. D. Argo, J. E. Gruzleski, Porosity in Modified Aluminum Alloy Castings,
AFS Transaction, 96 (1988) 65-74.
11. G. K. Sigworth, Exton, A Scientific Basis for Degassing Aluminum Alloy
Casting, AFS Transaction, 95 (1987) .
12. 翁震杰,壓力對鋁合金凝固現象之影響,鑄工,第77期,民國82年6月,第54-59頁。
13. P. S. Santos, H. S. Santos and S. P. Toledo, Standard Transition Aluminas.
Electron Microscopy Studies, Materials Research, 3(4) (2000) 104-114.
14. S. W. Whangbo, Y. K. Choi, W. S. Koh, K. B. Chung, H. K. Jang, C. N. Whang,
Effect of Silicon Surface States on the Properties of Epitaxial Al2O3
Films, Thin Solid Films, 398-399 (2001) 480-484.
15. L. D. Hart, Esther Lense, Alumina Chemicals:Science and Technology
Handbook, Westerville, Ohio:American Ceramic Society, (1990) p.32, p.50.
16. William D. Callister, Jr., Materials Science and Engineering:An
Introduction, 4th ed, John Wiley & Sons, Inc., (1997) 38.
17. M. R. Alexander, G. E. Thompson and G. Beamson, Characterization of the
Oxide/Hydroxide Surface of Aluminum Using X-ray Photoelectron
Spectroscopy: A Procedure for Curve Fitting the O 1s Core Level,
Surface and Interface Analysis, 29 (2000) 468-477.
18. 林敬二、楊美惠、楊寶旺、廖德章、薛敬和,英.中.日 化學大辭典,高立圖書
有限公司,民國89年1月,第70、380、927、1364頁。
19. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics,
2nd ed, New York:John Wiley & Sons, Inc., (1976) 64-65.
20. Igor Levin, Davin Brandon, Metastable Alumina Polymorphs:Crystal
Structures and Transition Sequences, Journal of the American Ceramic
Society, 81 8 (1998) 1995-2012.
21. 宋啟瑞,在鋁上成長堰層陽極氧化膜的研究,國立交通大學材料科學與工程研究所
碩士班論文,新竹,民國82年。
22. 顏秀崗,吳英政,中國材料科學學會82年度論文集,民國82年4月,第8-9至8-10頁。
23. 徐東明,熱成長氧化膜防治S44660不銹鋼氫脆之研究,國立中興大學材料工程學
研究所碩士班論文,台中,民國88年。
24. P. E. Doherty, R.S. Davis, Direct Observation of the Oxidation of Aluminum
Single-Crystal Surfaces, Journal of Applied Physics, 34(3) (1963) 619-628.
25. P. E. Doherty, R.S. Davis, The Formation of Surface Pits by the
Condensation of Vacancies, Acta Metallurgica, 7 (1959) 118-123.
26. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, E. J. Mittemeijer,
Composition and Chemical State of the Ions of Aluminium-Oxide Films Formed
by Thermal Oxidation of Aluminum, Surface Science, 506(2002) 313-332.
27. O. Salas, H. Ni, C. G. Levi, V. Jayaram, R. Mehrabian, Nucleation and
Growth of Al2O3/metal Composites by Oxidation of Aluminum Alloys,Journal
of Materials Research, 6(9) (1991) 1964.
28. S. W. Whangbo, Y. K. Choi, H. K. Jang, Y. D. Chung, I. W. Lyo, C. N. Wang,
Effect of Oxidized Al Prelayer for the Growth of Polycrystalline Al2O3
Films on Si Using Ionized Beam Deposition, Thin Solid Films, 388(2001)
290-294.
29. J. F. Moulder, W. F. Stickle, P. E. Sobal, K. D. Bomben, Handbook of X-ray
Photoelectron Spectroscopy, Perkin-Elmer Corporation Physical Electronics
Division, (1992) 213-239.
30. A. J. Criado, J. A. Martinez and R. Calabres, Growth of Eutectic Silicon
From Primary Silicon Crystals in Aluminium-Silicon Alloys, Scripta
Materialia, 36(1) (1997) 47-54.
31. S. Wu, H. Nakae, Nucleation Effect of Alumina in Al-Si/Al2O3 Composites,
Journal of Materials Science Letters, 18 (1999) 321-323.
32. Lu Weihua, Wang Ruyao, Microstructure and Mechanical Behavior of Nodular
Silicon Al-Si Alloy, Proceedings of the Fifth Asian Foundry Congress, AFC-5.
33. R. R. Jeng, C. Y. Ma, T. S. Chen, Y. L. Lin, C. T. Chang, Proceeding of
1987 Chinese Annual Casting Conference, No. 144, 24 (1987).
34. International Centre for Diffraction Data, PCPDFWIN – Powder Diffraction
File(粉末繞射光碟資料庫), International Centre for Diffraction Data, (2001).
35. Y. Wu, Y. Zhang, G. Pezzotti, J. Guo, Influence of AlF3 and ZnF2 on the
Phase Transformation of Gamma to Alpha Alumina, Materials Letters,
52 (2002) 366-369.
36. K. Shimizu, R. C. Furneaux, G. E. Thompson, G. C. Wood, A. Gotoh and
K. Kobayashi, On the Nature of “Easy Paths” for the Diffusion of Oxygen
in Thermal Oxide Films on Aluminum, Oxidation of Metals, 35 5/6 (1991)
427-439.
37. C. Anandan, X-ray Photoelectron Spectroscopic Study of Room-Temperature
Evolution of Oxide-Covered Hydrogenated Amorphous Silicon卅Aluminium
Interface, Applied Surface Science, 89 (1995) 57-61.
38. 徐維駿,Al-7Si-XMg合金氧化膜之診斷與分析,國立中央大學機械工程學研究所
碩士班論文,桃園,民國88年6月。
39. L. E. Fratila-Apachitei, J. Duszczyk, L. Katgerman, Voltage Transients and
Morphology of AlSi(Cu) Anodic Oxide Layers Formed in H2SO4 at Low
Temperature, Surface and Coatings Technology, 157 (2002) 80-94.
40. P. C. Snijders, L. P. H. Jeurgens, W. G. Sloof, Structure of Thin Aluminium-
Oxide Films Determined From Valence Band Spectra Measured Using XPS,
Surface Science, 496 (2002) 97-109.
41. R. A. Robie, B. S. Hemingway, J. R. Fisher, Thermodynamic Properties of
Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals)
Pressure and at Higher Temperatures, Washington : U.S. Govt. Print. Off.,
(1978) p.138, p.262, p.345, p.365.
42. 黃立伍,製程參數對鑄造鋁合金品質影響之研究,國立中央大學機械工程學研究所
博士班論文,桃園,民國92年6月。
43. Yingwei Fei, AGU Reference Shelf 2 Mineral Physics and Crystallography:
A Handbook of Physical Constants, The American Geophysical Union,
(1995) 29-44.
44. 李文福,工程材料的本質與性質,茂昌圖書有限公司,民國81年3月,第208至209頁。
45. P. S. Mohanty, F. H. Samuel, J. E. Gruzleski, Experimental Study on Pore
Nucleation by Inclusions in Aluminum Castings, Transactions of the American
Foundrymen's Society, 103 (1995) 555-564.
46. A. Hulsmans, M. Schmucker, W. Mader, H. Schneider, The Transformation of
Andalusite to Mullite and Silica: Part I. Transformation Mechanism in [001]
A Direction, American Mineralogist, 85 (2000) 980-986.
47. Liu Yang, Degui Zhu, Changqing Xu, Jun Zhang, Jian Zhang, On the Role of
Magnesium and Silicon in the Formation of Alumina from Aluminum Alloys by
Means of DIMOX Processing, Metallurgical and Materials Transactions. A,
Physical Metallurgy and Materials Science, 27A (1996) 2094-2099.
48. 汪建民,材料分析,中國材料科學學會,民國87年10月,第353、360-361頁。
指導教授 施登士(Teng-Shih Shih) 審核日期 2003-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明