參考文獻 |
1. C. W. Chien, Y. C. Lee, P. S. Lee, J. Y. Chang and J. C. Chen, “The analysis of 2D photonic band gap structure fabricated by an interferometric lithographic system” Appl. Optics 46 3196-3204 (2007).
2. S. H. Zaidi and S. R. J. Brueck, “Multiple-exposure interferometric lithography,” J. Vac. Sci. Technol. B 11 658-666 (1993).
3. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13, 5331-5337 (2005).
4. X. L. Yang, L. Z. Cai and Y. R. Wang, “Larger bandgaps of two-dimensional triangular photonic crystals fabricated by holographic lithography can be realized by recording geometry design” Opt. Express 12, 5850-5856 (2004).
5. E. J. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B10, 283-295 (1993).
6. D. L. Bullock, C. Shih, and R. S. Margulies, “Photonic band structure investigation of two-dimensional Bragg reflector mirrors for semiconductor laser mode control” J. Opt. Soc. Am. B 10, 399 (1993).
7. S. Noda, K. Tomoda, N. Yamamoto and A. Chutinan, “Full three-dimensional photonic bandgap Crystals at near-infrared wavelengths,” Science 289, 604-606 (2000).
8. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915-1917 (2003).
9. K. S. L. Kenneth, B. Jose, B. K. T. Kenneth, C. Manish, A. J. A. Gehan, I. M. William, H. M. Gareth and K. G. Karen, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3, 1701-1705 (2003).
10. R. Furstner, W. Barthlott, C. Neinhuis and P. Walzel, “Wetting and self-cleaning properties of artificial superhydrophobic surfaces,” Langmuir 21, 956-961 (2005).
11. S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Nanoimprint lithography” , J. Vac. Sci. Technol. B 14, 4129-4133 (1996).
12. Wijnhoven, J. E. G. J. & Vos, W. L. “Preparation of photonic crystals made of air spheres in titania” Science 281, 802-804 (1998).
13. V. Berger, O. G. Lafaye and E. Costard, “Fabriation of a 2D photonic bandgap by a holographic method”, Electron. Lett. 33, 425-426 (1997).
14. S. H. Zaidi and S. R. J. Brueck, “Multiple-exposure interferometric lithography,” J. Vac. Sci. Technol. B 11 658-666 (1993).
15. L. F. Johnson, G. W. Kammlott and K. A. Ingersoll, ‘‘Generation of periodic surface corrugations ’’, Appl. Opt., 17, No. 8, 1165 (1978)
16. S. H. Zaidi and S. R. J. Brueck “Multiple-exposure interometric lithography”, J. Vac. Sci. Technol. B, 11, 658 (1993).
17. A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney and M. D. Perry, “Methods for fabricating arrays of hole using interference lithography” , J. Vac. Sci. Technol. B, 15, 2439 (1997).
18. X. Chen, Z. Zhang, S. R. J. Brueck, R. A. Carpio and J. S. Petersen “Process development for 180-nm structures using interferometric lithography and I-line photoresist”, in Emerging Lithographic Technologies, David E. Seeger, Editor, Proceedings of SPIE, 3048, 309 (1997).
19. J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle ”Liquid immersion deep-ultraviolet interferometric lithography”, J. Vac. Sci. Technol. B, 17, 3306 (1999)
20. H. H. Solak, D. He, W. Li, S. Singh-Gasson, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography”, Appl. Phys. Lett., 75, 2328 (1999).
21. S. Shibata, Y. CHE, O. Sugihara, N. Okamoto and T. Kaino, ‘‘Fabrication of high-resolution periodical structure in photoresist polymers using laser interference technique’’, Jap. J. Appl. Phys., 43, No. 4B, 2370 (2004).
22. J. S. Im and H. J. Kim, ‘‘Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films’’, Appl. Phys. Lett., 63, 1969 (1993)
23. B. Rezek, C. E. Nebel and M. Stutzmann, “Polycrystalline silicon thin films by interference laser crystallization of amorphous silicon”, Jap. J. Appl. Phys., 38, L1083 (1999).
24. B. Rezek, C. E. Nebel and M. Stutzmann, “Laser beam induced currents in polycrystalline silicon thin films prepared by interference laser crystallization”, J. Appl. Phys., 91, 4220 (2002).
25. P. V. Santos, A. R. Zanatta, U. Jahn, A. Trampert, F. Dondeo and I. Chambouleyron, “Laser interference structuring of a-Ge films on GaAs”, J. Appl. Phys., 91, 2916 (2002).
26. M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, and D. J. Sellmyer, V. N. Petryakov, Yu. K. Verevkin, N. I. Polushkin, and N.N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography”, Appl. Phys. Lett., 79, 2606 (2001).
27. T. E. Murphy, “Design, Fabrication and Measurement of Integrated Bragg Grating Optical Filters”, Ph.D. Thesis, Massachusetts Institute of Technology, 2001.
28. T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter and H. I. Smith, ‘‘Achromatic interferometric lithography for 100-nm-period gratings and grids’’, J. Vac. Sci. Technol. B, 13, 2732 (1995).
29. J. Ferrera, M. L. Schattenburg and H. I. Smith, ‘‘Analysis of distortion in interferometric lithography’’, J. Vac. Sci. Technol. B, 14, 4009 (1996).
30. P. T. Konkola, C. G. Chen, R. K. Heilmann and M. L. Schattenburg, ‘‘Beam steering system and spatial filtering applied to interference lithography’’, J. Vac. Sci. Technol. B, 18, 3282 (2000).
31. C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati and M. L. Schattenburg, ‘‘Image metrology and system controls for scanning beam interference lithography’’, J. Vac. Sci. Technol. B, 19, 2335 (2001).
32. F. H. Dill, W. P. Hornberger, P. S. Hauge and J. M. Shaw, “Characterization of positive photoresist”, IEEE Trans. Electr. Dev., ED-22, 445 (1975).
33. F. H. Dill and J. M. Shaw, ‘‘Thermal effects on the photoresist AZ1350J’’, IBM J. Res. Develop.21, 210-218 (1977).
34. T. A. Carroll, B. W. Johnson and W. F. Ramirez, ‘‘A model for the thermal degeneration of a positive optical photoresist’’, IEEE Trans. Electr. Dev., 39, No.4, 777 (1992).
35. D. J. Kim, W. G. Oldham and A. R. Neureuther, ‘‘Development of positive photoresist’’, IEEE Trans. Electr. Dev., ED-31, No. 12, 1730 (1984).
36. C. A. Mack, ‘‘Development of positive photoresist’’, J. Electrochem. Soc., 134, 148 (1987).
37. C. A. Mack, ‘‘New kinetic model for resist dissolution’’, J. Electrochem. Soc. 139, L35 (1992).
38. E. Hecht, “Optics”, 4th, Addison Wesley, 2002.
39. R. D. Guenther, “Modern optics”, JOHN WILEY & SONS, 1990.
40. B. Edlen, ‘‘The refractive index of air’’, Metrologia, 2, 71 (1966).
41. W. V. Smith, and P. P. Sorokin, “The laser”, 1st, 1967.
42. G. R. Fowles, ‘‘Introduction to modern optics’’, 2nd, Holt, Rinehart and Winston Inc., 1975.
43. R. J. Schilling and S. L. Harris, “Applied Numerical Methods for Engineering”, Brooks/Cole, 2000.
44.欒丕綱與陳啟昌, “光子晶體-從蝴蝶翅膀到奈米光子學”, 第一版,五南圖書,2005。
45. M. L. Schattenburg, C. Chen, P. N. Everett, P. Konkola, and H. I. Smith, “Sub-100nm metrology using interferometrically produced fiducials”, J. Vac. Sci. Technol. B 17, 2692 (1999).
46. T. A. Savas, M. Farhoud, H. I. Smith, M. Hwang, and C. A. Ross, “Properties of large-area nanomagnet arrays with 100 nm period made by interferometric lithography”, J. Appl. Phys. 85, 6160 (1999).
47. A. Fernandez and D. W. Phillion, “Effects of Phase Shifts on Four-Beam Interference Patterns,” Appl. Optics 37 473-478 (1998).
48. I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, S. Meskinis, “Fabrication of photonic structures by means of interference lithography and reactive ion etching,” Appl. Surf. Sci. 186 599-603 (2002).
49. H. H. Solak, C. David, J. Gobrecht, L. Wang, F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings ”, J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
50. E. J. Seo, H. J. Bak, S. K. Kim, Y. S. Sohn and H. K. Oh, “Modification of the Development Parameter for a Chemically Amplified Resist Simulator,” J. Korean Phys. Soc. 40 725-728 (2002).
51. S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du and J. Yao, “Enhanced dill exposure model for thick photoresist lithography,” Microelectron. Eng. 78-79 490-495 (2005).
52. T. A. Carroll, B. W. Johnson and W. F. Ramirez, “A model for the thermal degeneration of a positive optical photoresis,” IEEE Trans. Electron Devices 39 777-781 (1992).
53. L. Pang, W. Nakagawa and Y. Fainman, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” Appl. Optics 42, 5450-5456 (2003).
54. F. Quiñónez, J. W. Menezes, L. Cescato, V. F. Rodriguez-Esquerre, H. Hernandez-Figueroa, R. D. Mansano, “Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography,” Opt. Express 14, 8578-8583 (2006).
55. B. A. Mello, I. F. Costa, L. Cescato, and C. R. A. Lima, “Developed profile of holographically exposed photoresist gratings,” Appl. Optics 34, 597-603 (1995).
56. R. Z. Wang, X. H. Wang, B. Y. Gu and G. Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys. 90, 4307-4313 (2001).
57. Ovidiu Toader, Timothy Y.M. Chan, and Sajeev John, “Photonic Band Gap Architectures for Holographic Lithography,” Phys. Rev. Lett. 92, 043905-1-043905-4 (2004).
58. Zhi-Yuan Li, Ben-Yuan Gu ,and Guo-Zhen Yang “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals” PHYSICAL REVIEW LETTERS 81, 2574-2577 (1998). |