博碩士論文 90323076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.218.38.67
姓名 張宏禾(Hung-Ho Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 觸媒對多孔性介質爐之預混燃燒現象之影響
(Effects of catalysis on premixed combustion in a porous media burner)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是利用實驗方法來研究甲烷,氫氣和空氣預混燃氣在多孔性陶瓷介質燃燒爐中的燃燒現象,另外在多孔性介質表面塗上不同的催化劑,此催化劑成分分別是氧化鑭和氧化鎂。實驗中將甲烷與空氣預先做均勻的混合,再送入燃燒爐中燃燒,等火焰穩定之後再通入所需要的氫氣流量。實驗中使用LabView 程式控制空氣及甲烷之流量、監測爐內溫度分布,並計算當量比及平均流速。
燃燒爐的內徑是2.54公分、外徑10公分且高度20公分,裡面放了七塊多孔性介質,表面塗有催化劑的多孔性介質擺在燃燒爐的中間位置,實驗中討論爐體結構、當量比、流速、氫氣莫爾分率的改變對火焰造成的影響,並探討一氧化碳、氮氧化物和總碳氫濃度對以上各參數之影響。
實驗測試的當量比條件為0.5、0.55、0.6和0.7,而氫氣在燃料中的比例為0、0.3和0.6。結果顯示在多孔性陶瓷介質燃燒爐中放置塗有催化劑的陶瓷塊有助於火焰燃燒溫度的提昇,增加燃燒效率。實驗結果也發現多孔性陶瓷介質燃燒爐燃燒時所產生的CO和 的排放量相當低。添加氫氣會影響到火焰的位置,但可增加火焰速度或是造成燃燒速率過於快速。
摘要(英) The combustion characteristics of premixed hydrogen- methane-air mixture in a porous media burner with catalysts are studied experimentally. La2O3 and MgO are used as the catalysts in this work. They are supported on highly porous SiC and Al2O3 forms. Flow rates are controlled by mass flow meters. Gas temperature within the burner and CO, NOX, THC emissions are monitored throughout the experiments.
Results show that the flame temperature is increased by adding catalysts due to the increased reaction rate. Flame positions are different for different material burners. For Al2O3 porous burners, flame is usually stabilized in the middle of the burner. But for SiC burners, flame is stabilized at near the inlet due to higher thermal conductivity of SiC. In addition, the stable region is wider for SiC burner and the flame temperature is higher due to better preheating effects.
Addition of hydrogen in the methane-air mixture does not change the flame temperature very much. Although hydrogen does promote chemical reaction, but it also has higher thermal conductivity and cooling by convection is enhanced due to increase flame speed.
For burners without catalysts, CO emission increases with the equivalence ratio and flame speed slightly because of shorter residence time. But the concentrations are all less than 15ppm. For burners with catalysts, the CO emissions are all reduced to below 5ppm. The catalysts do promote CO to CO2 conversion. On the other hands, NOX emissions are all in the range of 10-15 ppm.
關鍵字(中) ★ 觸媒
★ 甲烷
★ 燃燒
★ 多孔性介質
關鍵字(英) ★ methane
★ catalysis
★ combustion
★ porous media
論文目次 目 錄
摘要 ………………………………………………I
誌謝 ………………………………………………III
目錄 ………………………………………………IV
表目錄 ………………………………………………VII
圖目錄 ………………………………………………VIII
符號表 ………………………………………………XI
第一章 緒論…………………………………………1
1.1 簡介………………………………………………1
1.2 文獻回顧…………………………………………5
1.3 研究方向…………………………………………12
第二章 實驗裝置……………………………………14
2.1 實驗架設…………………………………………14
2.2 爐體結構…………………………………………14
2.3 溫度量測系統……………………………………16
2.4 氣體管路和控制系統……………………………17
2.5 氣體量測系統……………………………………19
2.6 Labview程式部分…………………………………20
2.7 催化劑……………………………………………21
第三章 實驗流程……………………………………22
3.1 儀器安裝和準備………………………………22
3.2 預熱爐體………………………………………23
3.3 流率穩定範圍…………………………………23
3.4 燃燒速度………………………………………24
3.5 參數定義………………………………………25
第四章 結果與討論…………………………………27
4.1 催化劑對燃燒溫度之影響………………………27
4.2 多孔性介質不同材質……………………………28
4.3 各爐體可穩定在爐內的速度……………………30
4.4 改變孔徑大小對燃燒現象之影響………………32
4.5 加入氫氣對燃燒現象之影響……………………33
4.6 當量比對燃燒現象之影響………………………35
4.7 污染物的排放……………………………………36
第五章 結論與建議……………………………………39
5.1 結論……………………………………………39
5.2 未來研究方向與建議…………………………41
參考文獻…………………………………………………69
附錄一 溫度和氣體流量之誤差分析…………………74
附錄二 燃燒效率之計算………………………………79
參考文獻 參考文獻
[ 1] Weinberg, F. J., “Combustion Temperature: The Future?” Nature, Vol. 233, pp. 239-241, 1971.
[ 2] Lloyd, S. A., and Weinberg, F. J., “A Burner for Mixtures of Very Low Heat Content,” Nature, Vol. 251, pp. 47-49, 1974.
[ 3] Lloyd, S. A., and Weinberg, F. J., “Limits to Energy Release and Utilisation from Chemical Fuels,” Nature, Vol. 257, pp. 367-370, 1975.
[ 4] Hardesty, D. R., and Weinberg, F. J., “Burners Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 8, pp. 201-214, 1974.
[ 5] Hardesty, D. R., and Weinberg, F. J., “Converter Efficiency in Burner Systems Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 12, pp. 153-157, 1976.
[ 6] Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
[ 7] Kotani, Y., and Takeno, T., “An Experimental Study on Stability and Combustion Characteristics of an Excess Enthalpy Flame,” Nineteenth Symposium (International) on Combustion/The Combustion Institute, pp. 1503-1509, 1982.
[ 8] Echigo, R., Yoshizawa, Y. Hamamura, K., and Tomimura, T., “Analytical and Experimental Studies on Radiative Propagation in Porous Media With Internal Heat Generation,” Proceedings of the 8th International Heat Transfer Conference, San Francisco, CA, Vol. II, pp. 827-832, 1986.
[ 9] Yoshizawa, Y., Sasaki, K., and Echigo, R.,”Analytical Study of the Structure of Radiation Controlled Flame,” International Journal of Heat and Mass Transfer, Vol. 31, No. 2, pp. 311-319, 1988.
[10] Sathe, S. B., Peck, R. E., and Tong, T.-W., “Flame Stabilization and Multimode Heat Transfer in Inert Porous Media: A Numerical Study,” Combustion Science and Technology, Vol. 70, pp. 93-109, 1990.
[11] Sathe, S. B., Peck, R. E., and Tong, T.-W., “A Numerical Analysis of Heat Transfer and Combustion in Porous Radiant Burners,” International Journal of Heat and Mass Transfer, Vol. 33, No. 6, pp. 1331-1338, 1990.
[12] Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” ASME/JSME Thermal Engineering Proceedings, Vol. 4, pp. 225-231, 1991.
[13] Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” Transactions of the ASME, Vol. 115, pp. 744-750, 1993.
[14] Hsu, P.-F., Matthews, R. D., “The necessity of using detailed kinetics in models for premixed combustion within porous media,” Combustion and Flame, Vol. 93, pp. 457-466, 1993.
[15] Hsu, P.-F., “Experimental Study of the Premixed Combustion within the Nonhomogenous Porous Ceramic Media,” HTD-Vol. 328, National Heat Tranfer Conference, Vol. 6, ASME 1996.
[16] C. L. Hackert, J. L. Ellzey, and O. A. Ezekoye, “Combustion and Heat Transfer in Model Two-Dimensional Porous Burners,” Combustion and Flame, Vol. 116, pp. 177-191, 1999.
[17] Marc, D. R., Richard, D. H., Robert, W. D., “Numerical analysis of a catalytic radiant burner: effect of catalyst on radiant efficiency and operability,” Catalysis Today Vol. 47, pp. 253-262, 1999.
[18] G. Brener, K. Pickenacker, O. Pickenacjer, D. Trmis,k. Wawrzinek, and t. Weber, “Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media,” Combustion and Flame, Vol. 123, pp. 201-213, 2000.
[19] Tseng, C.-J., and Li, C.-H., “Thermally-Enhanced Combustion in a Porous Medium Burner,” Journal of the Chinese Society of Mechanical Engineers, Vol. 22, No. 3, pp. 217-224, 2001.
[20] 曾重仁 蔡桓宇, “多孔性介質爐中熱增強燃燒現象之數值模擬,” 力學 第十七卷 第一期 51-61頁,民國90年六月。
[21] Tseng, C.-J., “Liquid Fuel Combustion in Porous Ceramic Burners,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1995.
[22] Tseng, C.-J., and Howell, J. R., “Liquid Fuel Combustion within Porous Inert Media,” Heat Transfer with Combined Modes, ASME-HTD, Vol. 299, pp. 63-69, 1994.
[23] Tseng, C.-J., and Howell, J. R., “Combustion of Liquid Fuels in a Porous Radiant Burner,” Combustion Science and Technology, Vol. 112, pp. 141-161, 1996.
[24] Kaplan, M., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” M.S. Thesis, Department of Mechanical Engineering, The University of Texas at Austin, 1994.
[25] Kaplan, M., and Hall, M. J., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” Experimental Thermal and Fluid Science, Vol. 11, pp. 13-20, 1995.
[26] Uykur, C., Henshaw, P. F., Ting, D. S.-K. and Barron, R. M., “Effects of addition of electrolysis production on methane / air premixed laminar combustion,” International Journal of Hydrogen Energy, Vol. 26, pp. 265-273, 2001.
[27] Tseng, C.-J., “Effects of hydrogen addition on methane combustion in a porous medium burner,” International Journal of Hydrogen Energy, Vol. 27, pp. 699-707, 2002.
[28] Guido, S., Isotta, C., Vito, S., and Romano, A., “ Catalytic pre-mixed fibre burners,” Chemical Engineering Science, Vol. 54, pp. 3599-3608, 2002.
[29] Eli, R., and Yun., H., H., “Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts,” Applied Catalysis A, Vol. 133, pp. 149-161, 1995.
[30] Prabhu, A., K., Radhakrishnan, R., and Ted Oyama, S., “Supported nickel catalysts for carbon dioxide reforming of methane in plug flow and membrane reactors,” Applied Catalysis A, Vol. 183, pp. 241-252, 1999.
[31] U.S. Energy Information Administration, http://www.eia.doe.gov/
[32] National Instruments Corporation, PCI E series User Manual, Ch. 4, 1999.
[33] National Instruments Corporation, AT E Series User Manual, Ch. 4, 1997.
[34] J.U.M. Engineering, User Manual FID Model 3-300MC, 2001.
[35] Sierra Instruments Corporation, Sierra Series 830/840/860 side-trak and auto- trak mass flow meter and controllers, 1996.
[36] Advantech Corporation, Pcl-726 Six Channel D/A Output Card User Maunal, 1994.
[37] 鼎嚮科研股份有限公司, 數位式氣體質量流量控制器 MC-2000 Series and MC2000E Series使用說明書。
[38] Pickena¨cker, O., Pickena¨cker, K., Wawrzinek, K., Trimis, D., Pritzkow, W. E. C., Mu¨ller, C., Goedtke, P.,Papenburg, U., Adler, J., Standke, G., Heymer, H., Tauscher, W., and Jansen, F., “Practice & Management: innovative ceramic material for porous-medium burners, I” Interceram, Vol. 48, pp. 326–330, 1999.
[39] Pickena¨cker, O., Pickena¨cker, K., Wawrzinek, K., Trimis,D., Pritzkow, W. E. C., Mu¨ller, C., Goedtke, P., Papenburg, U., Adler, J., Standke, G., Heymer, H., Tauscher, W., and Jansen, F., “Drying & Firing: innovative ceramic materials for porous-medium burners, II” Interceram, Vol. 48, pp. 424–434, 1999.
[40] Adam Bielanski, and Jerzy Haber, Oxygen in Catalysis, pp. 201, Marcel Dekker, New York, 1991.
[41] G., C., Bond, Heterogeneous Catalysis: Principles and Application, 2nd Ed., pp. 46, Oxford, New York, 1993.
[42] S., R., Turns, An Introduction to Combustion: Conceptions and Applications, 2nd Ed., Ch. 5 and Ch. 15, Mcgraw-Hill, Singapore, 2000.
[43] S., C., Saxena, W., Y., Wu, and M., B., Fei., “Fluidized-bed combustion of coal,” Energy, Vol. 22, pp. 1029-1040, 1997.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2003-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明