國立中央大學八十六學年度碩士班研究生入學試題卷

所別: 工業管理研究所 丙組 科門:

生產與作業管理

共2頁第1頁

1. Explain the following terms (5 points per term, 45 points totally):

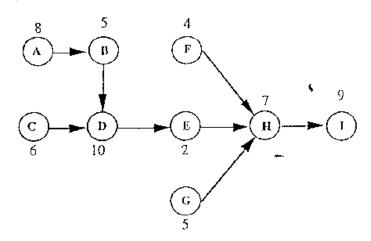
· Benchmarking

SPC

• Quality Circle

· Producer Risk

• Delphi Method


Pareto Analysis

CRAFT

• Sequential Decision Tree

• GT

- 2. (10 pts) There are three basic types of layouts: process, product, and fixed position. Please explain each one of them.
- 3. (10 pts) Give the following precedence diagram and task times (in minutes) for a assembly product, please balance the assembly line using a ranked position weight method assuming the cycle time is 19.2 minutes?

4. (10 pts) Given the following data, use exponential smoothing method ($\alpha = 0.2$) to develop a demand forecast. Assume the forecast for the initial period is 5.

Period	1	2	3	4	5	6
Demand	7	9	5	9	13	8

5. (12 pts) Consider the following decision table for three product decisions (A, B, and C) and three future market conditions (payoffs = \$ millions).

MARKET CONDITIONS								
DECISION	i	2	3					
Α	\$1 .0	\$2.0	\$0.5					
В	8.0	1.2	0.9					
С	0.7	0.9	1.7					

Determine the best decision using the following decision criteria (You need to show the solution process).

- Maximax
- 2. Maximin
- 3. Minimax regret
- 4. Expected value; p(1)=0.3, p(2)=0.5, p(3)=0.2

國立中央大學八十六學年度碩士班研究生入學試題卷

所別: 工業管理研究所 丙組 科目: 生產與作業管理 共 2 頁 第 2 頁

6. (13 pts) Twenty samples of n = 200 were taken at an inspection station between two crucial workstations in a production process. The number of defective items in each sample were recorded as follows.

Sample	Defective	p	Sample	Defective	р
1	12	0.060		16	0.080
2	18	0.090	12	15	0.075
. 3	10	0.050	13	13	0.065
4	15	0.075	14	16	0.080
5	16	0.080	15	18	0.090
6	19	0.095	16	17	0.085
7	17	0.085	17	18	0.090
8	12	0.060	18	20	0.100
9	11	0.055	19	21	0.105
10	14	0.070	20	22	0.110

Management wants to develop p-chart based on these data that assigns 95 percent (2-sigma limits) of the variability to random causes. Set up the p-chart and plot the observations to determine if the process was out of control at any point.