國立中央大學九十學年度碩士班研究生入學試題卷

所別: 企業管理學系 乙組 科目: 微積分 共一頁第一

- 1. (10%) Find the following limits
 - $(1) \lim_{x \to \infty} 3x \sin \frac{1}{x}.$
 - $(2) \lim_{n\to\infty} (n^2+n)^{\frac{1}{n}}$.
- 2. (10%) Determine the convergence or divergence of

$$(1)\textstyle\sum\limits_{n=0}^{\infty}\frac{(-1)^{n+1}n!}{1\times 3\times 5\times \cdots \times (2n+1)}.$$

(2)
$$\sum_{n=1}^{\infty} \frac{4^n}{3^n-1}$$
.

- 3. (10%) Find a, b, c and d such that $f(x) = ax^3 + bx^2 + cx + d$ has relative maximum at (2,4), relative minimum at (4,2) and inflection point at (3,3).
- 4. (20%) Let $f(x) = \begin{cases} 0, & x = 0 \\ x \sin \frac{1}{x}, & x \neq 0 \end{cases}$ and $g(x) = \begin{cases} 0, & x = 0 \\ x^2 \sin \frac{1}{x}, & x \neq 0 \end{cases}$. Show that
 - (1) f is continuous but not differentiable at x = 0.
 - (2) g is differentiable at 0, and find g'(0).
- 5. (20%) Compute

(1)
$$\int \frac{x^2 + 5x + 2}{(x+1)(x^2+1)} dx$$
.

(2)
$$\int_0^\infty e^{-4x^2} dx$$
.

6. (10%) Find the maximum value of

$$f(x,y) = 8xy, \qquad x > 0, y > 0$$

subject to the constraint $(x^2/3^2) + (y^2/4^2) = 1$.

- 7. (10%) Let $f(x) = \ln[2(1+x)]$, find the Taylor series of f(x) in powers of x and determine the interval of convergence of this series.
- 8. (10%) Assume that f is a continuous function and that

$$\int_0^x t f(t) dt = \sin x - x \cos x.$$

Find $f'(\pi/2)$...

