博碩士論文 90323105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.145.163.138
姓名 陳文字(Wen-Tzu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 廣義模糊控制-離散系統 線性分式轉換法
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ T-S模糊模型之建構、強健穩定分析與H2/H∞控制★ 廣義H2模糊控制-連續系統 線性分式轉換法
★ H∞模糊控制-連續系統 線性分式轉換法★ H∞模糊控制—離散系統 線性分式轉換法
★ 強健模糊動態輸出回饋控制-Circle 與 Popov 定理★ 強健模糊觀測狀態回饋控制-Circle與Popov定理
★ H_infinity 取樣模糊系統的觀測型控制★ H∞取樣模糊系統控制與觀測定理
★ H-ihfinity取樣模糊系統動態輸出回饋控制★ H∞模糊系統控制-多凸面法
★ H∞模糊系統控制-寬鬆變數法★ 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測
★ 寬鬆耗散性模糊控制-波雅定理★ 耗散性估測器-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文提出一種新的模糊模型:線性分式轉換(Linear fractional transformation,LFT)架構的系統,
並分別設計出二階及三階兩種控制器,研究相同受控系統的控制問題。
論文中研究一個含有分式項的模糊控制問題,
以PDC動態輸出回饋控制器來使其達到二次漸進穩定,
並滿足廣義$H_{2}$性能指標的要求。採用全等轉換(congruence transform)
的方法來分析與設計控制器,使控制目標滿足廣義$H_{2}$的性能指標。
因為系統為LFT架構,所以必須考慮LFT架構的比例條件,此限制為求解時重要的條件之一。
在論文中,我們設計了兩種控制器,經過蕭氏轉換(Schur complement)與全等轉換之後,
可以分別得兩組控制器的線性矩陣不等式(LMIs),
來對原本的控制問題求解。我們也考慮因為線性矩陣不等式數目太多,
易造成求解時的難度增加,
所獲得的解過於侷限等情形提出簡化線性矩陣不等式(LMIs)數目與增加求解裕度的方法。
亦嘗試限制$Delta$滿足二次模(2-norm)的架構,探討如此限制下的求解條件。
最後,使用含有分式項的倒車例子進行電腦的模擬求解。
摘要(英) No
關鍵字(中) ★ 模糊控制
★ 線性矩陣不等式
★ 線性分式轉換
關鍵字(英) ★ Fuzzy control
★ LMI
★ LFT
論文目次 第一章 緒論
{1.1}文獻回顧
{1.2}研究動機
{1.3}論文架構
{1.4}符號標記
第二章 模糊線性分式轉換系統
{2.1}系統的數學模型
{2.2}控制器的數學模型
{2.2.1}二階模糊LFT動態輸出回饋控制器
{2.2.2}三階模糊LFT動態輸出回饋控制器
{2.3}閉迴路系統
{2.3.1}二階閉迴路系統
{2.3.2}三階閉迴路系統
第三章 模糊線性分式轉換架構之限制
{3.1}預備定理
{3.2}比例條件
第四章 廣義$H_{2}$性能限制
{4.1}廣義$H_{2}$性能
{4.2}LFT架構性能限制
{4.2.1}二階閉迴路系統之性能限制
{4.2.2}三階閉迴路系統之性能限制
第五章 寬鬆求解條件
{5.1}二階系統
{5.2}三階系統
第六章 電腦模擬倒車例子
{6.1}數學架構
{6.2}模擬結果
第七章 特殊情況
{7.1}數學模型
{7.2}控制目標
{7.3}舉例
第八章 總結與未來研究方向
{8.1}總結
{8.2}未來研究方向
{參考文獻}
附錄A 附註1說明
附錄B Sijk與Wijk各元素
附錄C 倒車例子
{C.1}推導
{C.2}求解增益矩陣
{C.2.1}二階系統增益矩陣
{C.2.2}三階系統增益矩陣
參考文獻 [1] T. Takagi and M. Sugeno,“Fuzzy identification of systems and
its applications to modeling and control”, IEEE Trans. Syst.
Man & Cybern., vol. 15, no. 1, pp. 116-132,Jan. 1985.
[2] M. Sugeno and G.T. Kang,“Structure identification of fuzzy
model”, Fuzzy Sets and Systems, vol. 28, pp. 15-33, 1988.
[3] K. Tanaka and M. Sugeno,“Stability analysis and design of
fuzzy control systems”, Fuzzy Sets and Systems, vol. 45, pp.
135-156, 1992.
[4] K. Tanaka and M. Sano,“Trajectory stabilization of a model car
via fuzzy control”, Fuzzy Sets and Systems, vol. 70, pp. 155-
170, 1995.
[5] H.O. Wang, K. Tanaka, and M.F. Griffin,“An approach to
fuzzy control of nonlinear systems: stability and design issues”,
IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 14-23, Feb. 1996.
[6] K. Tanaka, T. Ikeda, and H.O. Wang,“Fuzzy regulators and
fuzzy observers: relaxed stability conditions and LMI-based designs”,
IEEE Trans. Fuzzy Systems, vol. 6, no. 2, pp. 250-265, May 1998.
[7] S.G. Cao, N.W. Rees, and G. Feng,“Analysis and design of
fuzzy control systems using dynamic fuzzy global model”, Fuzzy
Sets and Systems , vol. 75, pp. 47-62, 1995.
[8] S.G. Cao, N.W. Rees, and G. Feng,“Stability analysis of fuzzy
control systems”, IEEE Trans. Syst. Man & Cybern.-Part B:
Cybernetics, vol. 26, no. 1, pp. 201-204, Feb. 1996.
[9] G. Feng, S.G. Cao, N.W. Rees, and C.K. Chak,“Design of
fuzzy control systems with guaranteed stability”, Fuzzy Sets and
Systems, vol. 85, pp. 1-10, 1997.
[10] S.H. Zak, “Stabilizing fuzzy system models using linear controllers”,
IEEE Trans. Fuzzy Systems, vol. 7, no. 2, pp. 236-240, Apr. 1999.
[11] I.R. Petersen,“A stabilization algorithm for a class of uncertain
linear systems”, Syst. & Contr. Lett., vol. 8, pp. 351-357, 1987.
[12] D.S. Bernstein,“Robust static and dynamic output-feedback
stabilization: deterministic and stochastic perspectives”, IEEE
Trans. Automat. Contr., vol. 32, no. 12, pp. 1076-1084, Dec. 1987.
[13] D.S. Bernstein,“The optimal projection equations for static and
dynamic output feedback: the singular case”, IEEE Trans. Automat. Contr.,
vol. 32, no. 12, pp. 1139-1143, Dec. 1987.
[14] K. Zhou and P.P. Khargonekar,“ Robust stabilization of linear
systems with norm-bounded time-varying uncertainty”, Syst. &
Contr. Lett., vol. 10, pp. 17-20, 1988.
[15] P.P. Khargonekar, I.R. Petersen, and K. Zhou,Robust stabilization
of uncertain linear systems: quadratic stabilizability and
H∞ control theory”, IEEE Trans. Automat. Contr., vol. 35,
no. 3, pp. 356-361, Mar. 1990.
[16] L. Xie, M. Fu, and C.E. de Souza, H∞ control and quadratic
stabilization of systems with parameter uncertainty via output
feedback”, IEEE Trans. Automat. Contr., vol. 37, no. 8, pp.
1253-1256, Aug. 1992.
[17] J.C. Geromel, J. Bernussou, and M.C. de Oliveira,“H2-
norm optimization with constrained dynamic output feedback
controllers: decentralized and reliable control”, IEEE Trans.
Automat. Contr., vol. 44, no. 7, pp. 1449-1454, July 1999.
[18] J. Li, D. Niemann, H. O. Wang, and K. Tanaka,“Parallel distributed
compensation for Takagi-Sugeno fuzzy models: multiobjective controller
design”, Proc. of American Control Conf., San Diego CA., June 1999,
pp. 1832-1836.
[19] C. Scherer, P. Gahinet, and M. Chilali,“Multiobjective output-
feedback control via LMI optimization”, IEEE Trans. Automat.
Contr., vol. 42, no. 7, pp. 896-911, July 1997.
[20] H.J. Kang, C. Kwon, H. Lee, and M. Park,“Robust stability
analysis and design method for the fuzzy feedback linearization
regulator”, IEEE Trans. Fuzzy Systems, vol. 6, no. 4, pp. 464-
472, Nov. 1998.
[21] K. Kiriakidis, A. Grivas, and A. Tzes,“Quadratic stability
analysis of the Takagi-Sugeno fuzzy model”, Fuzzy Sets and Systems,
vol. 98, pp. 1-14, 1998.
[22] M.C.M. Teixeira and S.H. Zak,“Stabilizing controller design for
uncertain nonlinear systems using fuzzy models”, IEEE Trans.
Fuzzy Systems, vol. 7, no. 2, pp. 133-142, Apr. 1999.
[23] K. Kiriakidis,“Robust stabilization of the Takagi-Sugeno fuzzy
model via bilinear matrix inequalities”, IEEE Trans. Fuzzy Systems,
vol. 9, no. 2, pp. 269-277, Apr. 2001.
[24] H.J. Lee, J.B. Park, and G. Chen,“Robust fuzzy control of
nonlinear systems with parametric uncertainties”, IEEE Trans.
Fuzzy Systems, vol. 9, no. 2, pp. 369-379, Apr. 2001.
[25] K. Tanaka, T. Ikeda, and H.O. Wang,“Robust stabilization of a
class of uncertain nonlinear systems via fuzzy control: quadratic
stabilizability, H∞ control theory, and linear matrix inequalities”,
IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 1-13, Feb. 1996.
[26] K.Tanaka, T.Hori, and H.O. Wang,“New robust and optimal
designs for Takagi-Sugeno fuzzy control systems”, in Proc. of
1999 IEEE Int'l Conf. on Control Appl. , Kohala Coast, Hawaii,
1999, pp. 415-420.
[27] A. Jadbabaie, M. Jamshidi, and A. Titli,“Guaranteed-cost
design of continuous-time Takagi-Sugeno fuzzy controller via
linear matrix inequalities”, in Proc. of IEEE World Congress on
Computational Intell. , Anchorage, AK., May 1998, vol. 1, pp. 268-273.
[28] S.K. Hong and R. Langari,“Synthesis of an LMI-based fuzzy
control system with guaranteed optimal H∞ performance”, in
Proc. of IEEE World Congress on Computational Intell. ,
Anchorage, AK., May 1998, vol. 1, pp. 422-427.
[29] Y.Y. Cao and P.M. Frank,“Robust H∞ disturbance attenuation
for a class of uncertain discrete-time fuzzy systems”, IEEE Trans.
Fuzzy Systems , vol. 8, no. 4, pp. 406-415, Aug. 2000.
[30] K.R. Lee, E.T. Jeung, and H.B. Park,“Robust fuzzy H∞ control
of uncertain nonlinear systems via state feedback: an LMI
approach”, Fuzzy Sets and Systems , vol. 120, pp. 123-134, 2001.
[31] B.S. Chen, C.S. Tseng, and H.J. Uang,“Mixed H2/H∞ fuzzy
output feedback control design for nonlinear dynamic systems:
an LMI approach”, IEEE Trans. Fuzzy Systems , vol. 8, no. 3,
pp. 249-265, June 2000.
[32] K. Zhou, Essentials of Robust Control , Prentice-Hall, Upper
Saddle River, NJ., 1998.
[33] H.D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto,“New
fuzzy control model and dynamic output feedback parallel
distributed compensation”, IEEE Trans. Fuzzy Systems , 2002,
submitted for publication.
[34] K. Tanaka and H.O. Wang, Fuzzy Control Systems Design: A
Linear Matrix Inequality Approach , John Wiley & Sons, Inc.,
New York, NY, 2001.
[35] G. Feng and J. Ma,“Quadratic stabilization of uncertain
discrete-time fuzzy dynamic system”, IEEE Trans. Circuits and
Systems-I: Fundamental theory and Applications , vol. 48, no.
11, pp. 1137-1344, 2001.
[36] D.C.W. Ramos and P.L.D. Peres,“A less conservative LMI
condition for the robust stability of discrete-time uncertain
systems”, Syst. & Contr. Lett. , , no. 43, pp. 371-378, 2001.
[37] J.C. Lo and W.T. Chen,“Generalized H2 control for LFT fuzzy
systems”, in Proc. 2003 Conf. Auto. Contr. , , TW, Mar. 2003,
vol. 1, pp. 275-278.
指導教授 羅吉昌(Ji-Chang Lo) 審核日期 2003-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明