國立中央大學96學年度碩士班考試入學試題卷

所別:財務金融學系碩士班 丙組 科目:微積分

- 1. (10%) Please find the area of region bounded by the graphs of $x = 4 y^2$ and x = y 2by integrating with respect to x.
- 2. (10%) Please evaluate the integral $\int x^3 e^x dx$.
- 3. (10%) Please evaluate the following limit.
 - (a) $(5\%) \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}}$
 - (b) (5%) $\lim_{x \to \infty} (\ln x)^{\frac{2}{x}}$
- 4. (10%) We put P dollars in a saving account for T years. The number of compoundings for interest is n times per year. At the annual interest rate is r, the total amount (i.e. principal plus interest) that one can receive after t years is $P\left(1+\frac{r}{n}\right)^{nT}$. If the number of compoundings per year becomes infinite. i.e. $n \longrightarrow \infty$, what is the total amount that one can receive after T years? (You have to give the derivation to justify your answer.)
- 5. (10%) Please find the sum of the series $\sum_{n=1}^{\infty} [(0.7)^n + (0.9)^n]$.
- 6. (10%) Please evaluate the integral of $\int_0^2 \int_x^2 e^{-y^2} dy dx$.
- 7. (25%) A random variable Q has the following form

$$Q = bX + cX^2$$

where b and c are real constants, and X is standard normally distributed random variable with mean = 0, variance = 1, that is $X \sim N(0,1)$. The moment generating function of Q is given by $E\left[e^{tQ}\right]$. Please find $E\left[e^{tQ}\right]$, i.e. $E\left[e^{tQ}\right] = E\left[e^{t\left(bX+cX^2\right)}\right] = E\left[e^{t\left(bX+cX^2\right)}\right]$ $\int_{-\infty}^{\infty} e^{t(bX+cX^2)} f(X) dX$, where f(X) is the probability density function of X, f(X) = $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}X^2}$.

8. (15%) The current price of a financial product P is a function of variable S, r, K, T, and σ as follows:

$$P = SN(d_1) - Ke^{-rT}N(d_2)$$

where

$$d_1 = \frac{\ln\left(\frac{S}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$$

$$= d \quad \sigma\sqrt{T} - \ln\left(\frac{S}{K}\right) + \left(r - \frac{\sigma^2}{2}\right)T$$

 $d_2 = d_1 - \sigma\sqrt{T} = \frac{\ln\left(\frac{S}{K}\right) + \left(r - \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$

and N(a) is the probability that a variable with a standard normal distribution will have a value less than a. N(a) is given by $N(a) = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} dy$

Please find $\frac{\partial P}{\partial \sigma}$, i.e. the derivative of P with respect to σ .