¬央大學八十九學年度碩士班研究生入學

產業經濟研究所 甲組 科鬥

甲統計學

共 / 頁 第

- 1. A single observation X is distributed uniformly on the interval $[0, \theta]$, $\theta > 0$. Calculate the risk function for the decision function $d(X)=cX^2$ when the loss function is quadratic, $L(\theta,a)=(\theta-a)^2$. (15%)
- 2. $X_1, X_2, ..., X_n$ is a random sample and X_1 has a density of the form $g(X_1 \mid \theta) = \theta^2 X_1 e^{-\theta x_1} \cdot X_1 \ge 0$ (=0 elsewhere), $\theta > 0$.
 - a) Find the maximum likelihood estimator for θ . (15%)
 - b) Find the Cramer-Rao bound for the variance of unbiased estimator of λ (θ) = θ^2 . (15%)
 - c) Find the method of moment estimator of θ . (15%)
- Consider the following two-variable model:

Model II: $Y_i = \beta_1 + \beta_2 X_i + \mu_i$ Model II: $Y_i = \alpha_1 + \alpha_2 (X_i - \overrightarrow{X}) + \mu_i$

- a). Find the estimators of β_1 and α_1 . Are they identical? Are their variances identical? (10%)
- b). Find the estimators of β_2 and α_2 . Are they identical? Are their variances identical? (10%)
- 4. Consider the following models:

$$\ln Y_i^* = \alpha_1 + \alpha_2 \ln X_i^* + \mu_i^*$$

$$\ln Y_i = \beta_1 + \beta_2 \ln X_i + \mu_i$$

Where $Y_i^*=w_1Y_i$ and $X_i^*=w_2X_i$, the w's being constants.

- a). Establish the relationships between the two sets of regression coefficients and their standard errors. (10%)
- b). Is the r^2 different between the two models? (10%)