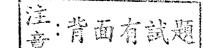
國立中央大學95學年度碩士班考試入學試題卷 #_2_頁 第_1_頁

所別:產業經濟研究所碩士班乙組 科目:統計學

- A. 選擇題:(共七題,每題 10分,請依照題目順序,將正確選項寫在答案卷,違者扣總分 20分。)
- (10%) Case 1: Consider an experiment in which five fibers having different lengths are subject to learn which fiber will break first. Suppose that the lengths of the five fibers are 1 inch, 2 inches, 3 inches, 4 inches, and 5 inches, respectively. Suppose that the probability that any given fiber will be the first to break is proportional to the length of that fiber. Case 2: Suppose that three fair coins are tossed simultaneously.

Question:


- a) The probability that the length of the fiber that breaks first is not more than 3 inches is 0.3.
- b) The probability that the length of the fiber that breaks first is not more than 3 inches is 0.4.
- c) The probability of obtaining exactly two heads is 1/8.
- d) The probability of obtaining exactly two heads is 3/8.
- e) Both (a) and (c) are correct.
- f) Both (b) and (d) are correct.
- g) Both (b) and (c) are correct
- h) None of the above is correct.
- = \(\tag{10\%}\) Case 1: Suppose that the p.d.f. of a certain random variable X has the following form: $f(x) = \begin{cases} cx & for & 0 < x < 4 \\ 0 & otherwise, \end{cases}$ where c is a given constant. Case 2: Suppose that the joint p.d.f. of X and Y is specified as $f(x,y) = \begin{cases} cx^2y & \text{for } x^2 \le y \le 1\\ 0 & \text{otherwise,} \end{cases}$ Question:

- a) The value of c in the case 1 is 1/8.
- b) The value of c in the case 2 is 4/21.
- c) $Pr(1 \le X \le 2)$ in the case 1 is 5/16.
- d) $Pr(X \ge Y)$ in the case 2 is 5/20.
- e) Both (a) and (b) are correct.
- f) Both (a) and (c) are correct.
- g) Both (b) and (d) are correct.
- h) (a), (b), (c), and (d) are correct.
- \equiv (10%) Case 1: Suppose that a random variable X can take each of the five values -2, 0, 1, 3, and 4 with equal probability. Case 2: Suppose that in a box containing red balls and blue balls, the proportion of red balls is p. Suppose again that a random sample of n balls is selected from the box with replacement. Let $X_i = 1$ if the i th ball that is selected is red, and let $X_i = 0$ otherwise where X denotes the total number of red balls in the sample.

Question:

- a) The variance of X in the case 1 is 3.56.
- b) The variance of Y = 4X 7 in the case 1 is 72.96.
- c) The variance of X in the case 2 is np^2 .
- d) The moment generating function of X_i in the case 2 is $\psi_i(t) = pe^t$.
- e) Both (a) and (b) are correct.
- f) Both (a) and (c) are correct.
- g) Both (b) and (d) are correct.
- h) (a), (b), (c), and (d) are correct.
- \square (10%) Case 1: Suppose that a random sample is to be taken from a distribution for which the value of the mean μ is unknown, but for which it is known that the standard deviation σ is 2 units. Case 2: Suppose that a fair coin is to be tossed n times independently. For i = 1,...,n, let $X_i = 1$ if a head is obtained on the i th toss and let $X_i = 0$ if a tail is obtained on the i th toss.

- a) The sample size must be in order to make the probability at least 0.99 that $|\bar{X}_n \mu|$ will be less than 1 unit in the case 1 is 200.
- b) The sample size must be in order to make the probability at least 0.99 that $|\overline{X}_n \mu|$ will be less than 1 unit in the case 1 is
- c) The number of times the coin must be tossed in order to make $\Pr(0.4 \le \overline{X}_n \le 0.6) \ge 0.7$ in the case 2 is 104.
- d) The number of times the coin must be tossed in order to make $Pr(0.4 \le \overline{X}_n \le 0.6) \ge 0.7$ in the case 2 is 84.
- e) Both (a) and (c) are correct.
- f) Both (b) and (d) are correct.
- g) Both (b) and (c) are correct.
- h) None of the above is correct.

所別:產業經濟研究所碩士班 乙組 科目:統計學

 π (10%) Case 1: Suppose a random sample of 25 observations is taken from a normal distribution with a mean μ and standard deviation 2. What is the probability that the sample mean will lie within one unit of μ ?

Case 2: Suppose that on a certain English examination, students from university A achieve scores which are normally distributed with a mean of 625 and a variance of 100, and that students from university B achieve score which are normally distributed with a mean of 600 and a variance of 150. If two students from university A and three students from university B take this examination, what is the probability that the average of the scores of the two students from university A will be greater than the average of the scores of the three students from university B? (Note Normal distribution function Φ (2.0)=0.9773 Φ (2.3)=0.9893 Φ (2.5)=0.9938 Φ (2.8)=0.9974 Φ (3.0)=0.9987)

The correct answer is:

- a) 0.9876 in the case 1.
- b) 0.9773 in the case 1.
- c) 0.9938 in the case 2.
- d) 0.9987 in the case 2.
- e) Both (a) and (c) are correct.
- f) Both (b) and (d) are correct.
- g) Both (b) and (c) are correct.
- h) None of the above is correct.
- / (10%) Suppose that 6 observations $X_1,...,X_6$ are selected at random from a normal distribution for which both the mean μ_1 and the variance σ_1^2 are unknown; and that is found that $\sum_{i=1}^6 (X_i - \overline{X}_6)^2 = 30$. Suppose also that 21 observations $Y_1, ..., Y_{21}$ are selected at random from another normal distribution for which both the mean μ_2 and the variance σ_2^2 are unknown; and that is found that $\sum_{i=1}^{21} (Y_i - \overline{Y}_{21})^2 = 40$. Ouestion:
 - a) To test the hypothesis that $\mu_1 \le \mu_2$ against $\mu_1 > \mu_2$, the statistic U can be defined as: $U = \frac{5(\overline{X}_6 \overline{Y}_{21})}{\sqrt{70((1/6) + (1/21))}}$
 - b) To test the hypothesis that $\mu_1 \le \mu_2$ against $\mu_1 > \mu_2$, use the t distribution with 25 degree of freedom.
 - c) To test the hypothesis that $\sigma_1^2 \le \sigma_2^2$ against $\sigma_1^2 > \sigma_2^2$, the value of the statistic is equal to 3.
 - d) To test the hypothesis that $\sigma_1^2 \le \sigma_2^2$ against $\sigma_1^2 > \sigma_2^2$, use the F distribution with 5 and 20 degrees of freedom.
 - e) Both (a) and (b) are correct.
 - f) Both (a) and (c) are correct.
 - g) Both (b) and (d) are correct.
 - h) (a), (b), (c), and (d) are correct.
- \pm \cdot (10%) Suppose that the proportion p of defective items in a large population of manufactured items is unknown and test the hypothesis p = 0.1 against $p \neq 0.1$. Suppose also that in a random sample of 100 items, it is found that 16 are defective. Question:
 - a) The value of statistic is 3.
 - b) The degree of freedom of the χ^2 distribution is 2.
 - c) The value of statistic is 4.
 - d) The degree of freedom of the χ^2 distribution is 1.
 - e) Both (a) and (b) are correct.
 - f) Both (c) and (c) are correct.
 - g) None of the above is correct.
- B. 證明與求解題 (共三題,每題 10分,請依照題目順序,將正確選項寫在答案卷,違者扣總分 10分。)

Suppose that when a small amount x of an insulin preparation is injected into a rabbit, the percentage decrease y in blood sugar has a normal distribution with mean βx and variance σ^2 , where the values of β and σ^2 are unknown. Suppose that when independent observations are made on ten different rabbits, the observed values of x_i and y_i for i = 1,...,10 are as

given
$$\sum_{i=1}^{n} x_{i} y_{i} = 342.4$$
 $\sum_{i=1}^{n} x_{i}^{2} = 66.8$ $\sum_{i=1}^{n} (y_{i} - \hat{\beta} x_{i})^{2} = 169.94$ $\sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = 412.1$

- $-\cdot$ (10%) Determine the values of the maximum likelihood estimator of $\hat{\beta}$ and $\hat{\sigma}^2$.
- \equiv \((10\%) Carry out a test of $\beta = 10$ against $\beta \neq 10$ and determine the value of R^2 .
- \equiv \(\) (10%) Describe the assumption of the regression.