博碩士論文 90343004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.226.222.132
姓名 鄭文達(Wern-Dare Jheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用能帶圖輔助解析n型矽之光電化學蝕刻機制
(Energy band diagram for the photo-electrochemical etching reaction of n-type (100) silicon)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究之目的在於建立n-型矽(100)於不同實驗條件下光電化學蝕刻之熱力學能帶圖。藉由能帶圖求得反應活化能,並配合動力學量測所得電流-電壓(i-V)數據與SEM蝕孔形貌觀察,推測n-型矽(100)在(1)不同照光強度下(2)不同濃度氫氟酸溶液中(3)不同濃度酒精添加下之蝕刻反應機制。
n型矽/氫氟酸界面間能帶圖之繪製,首先在HF蝕刻液中藉由量測n-Si 的開路電位(Open circuit potential, OCP)與平坦電位(Flatband voltage; Vfb),配合半導體能帶結構中費米能階(Fermi energy ; EF) 、導帶(Conduction band energy ; Ec)及價帶(Valence band energy ;Ev)的關係式,而建立出定量能帶圖。
研究結果顯示:(1)n型矽的光電化學蝕刻反應,隨著照光強度從15W增加至45W,其蝕刻速率呈線性增大(2)氫氟酸濃度在0~2M時以2M蝕刻速率最快,一旦濃度超過2M,蝕刻速率反而下降(3)當添加酒精至氫氟酸中時,蝕刻速率會隨酒精濃度增加(0M~10M)而提升並促進蝕孔表面平滑,但添加過量時(15M)則會造成孔洞側蝕的現象。
依據本論文所建立的能帶圖,可以對此n型矽/氫氟酸系統的光電化學蝕刻反應之行為及機制做出合理解釋。
摘要(英) The aim of this work was to build a thermodynamic energy band diagram for the system of n-type Si (100)/HF that is in dynamic equilibrium at the interface. The concept of the diagram was based on the shift of energy levels such as Fermi energy (EF), conduction band energy (Ec), and valence band energy (Ev) before and after the contact of silicon with HF solutions. Through measurements of the open circuit potential (OCP) and flatband voltage (Vfb), the energy band diagram for the Si/HF system was established. This diagram was useful in estimation of the activation energy for the photo-electrochemical etching system. The kinetic study demonstrated that the etching rate of the silicon (1) increases with an increase of illumination power; (2) increases to a maximum with HF from 0.5 to 2.0 M then decreases with further increase of the HF concentration; (3) accelerates in the presence of 5-10 M EtOH to form smooth macropores but decelerates and caues severe side-etching on the pore walls with the concentration of EtOH reaching 15 M. Based on the energy band diagram established and the electrochemical kinetic data measured, the author was in an attempt to make clear the mechanism for the photo-electrochemical reaction of the n-Si/HF system.
關鍵字(中) ★ 光電化學蝕刻
★ 能帶圖
★ 矽蝕刻
關鍵字(英) ★ photo-electrochemical etching
★ energy band diagr
論文目次 目錄
頁次
中文摘要……………………………………………………………… i
英文摘要.................................................................... ii
誌謝....................................................................... iii
目錄........................................................................ iv
表目錄.......................................................................ix
圖目錄....................................................................... x
符號對照表................................................................. xiv
第一章 緒論...................................................................1
1.1 前言………………..........................................................1
1.2 論文綱要..................................................................2
第二章 文獻回顧...............................................................4
2.1 矽晶圓的微細加工………………………………………...4
2.1.1 濕式蝕刻技術………………………………………4
2.1.2 乾蝕刻技術…………………………………………5
2.2 多孔矽形成機制…………………………………………...6
2.2.1 矽在電解液中的電流-電壓(I-V)特性……………..6
2.2.2 Beale 模型…………………………………………..7
2.2.3 擴散機制模型……………………………………..11
2.2.4 Zhang 模型………………………………………...15
2.2.5 Unagami 模型……………………………………..17
2.3 半導體電化學能帶理論………………………………….18
2.3.1半導體和電解液的電子能階………………………18
2.3.1.1半導體電子能階………………………….18
2.3.1.2電解液電子能階………………………….22
2.3.2 開路電壓…………………………………………..24
2.3.3 平坦電位…………………………………………..24
2.3.4 半導體/電解液界面的能帶理論………………….24
2.3.4.1接觸前…………………………………….24
2.3.4.2平衡狀態………………………………….25
2.3.5能帶圖之建立………………………………………27
2.3.6能帶圖在解釋半導體濕式蝕刻機構之應用…27
2.4半導體之光效應…………………………………………...27
2.4.1光電效應...................................................27
2.4.2半導體電極的光效應…………………………28
2.4.3對開路電壓的影響…………………………………29
2.4.4對電流-電壓的影響………………………………...29
2.4.5對能帶的影響………………………………………30
2.4.6空間電荷層對光效應之影響………………………30
2.5半導體外加偏壓效應……………………………………...30
2.6蝕刻動力學………………………………………………...31
2.6.1開路電位……………………………………………..31
2.6.2陽極動態極化法……………………………………..32
2.6.3 Tafel………………………………………………….33
2.6.4線性極化法…………………………………………..33
第三章 實驗方法………………………………………………………45
3.1 矽晶片選擇……………………………………………….45
3.2 試片前處理……………………………………………….45
3.3 實驗裝置………………………………………………….46
3.4 蝕刻條件評選…………………………………………….46
3.4.1氫氟酸濃度…………………………………………46
3.4.2照光強度……………………………………………47
3.4.3酒精之添加…………………………………………47
3.5 實驗步驟………………………………………………….47
3.6 儀器分析………………………………………………….48
第四章 結果與討論……………………………………………………54
4.1 以能帶圖輔助解析照光對n-type Si 在氫氟酸溶液下電化學蝕刻的影響機制54
4.1.1照光機制探討…………..…………………………..56
4.1.2影響 ilimit 的因素.………..………………………....57
4.1.3極限光電流 ilimit 的機制….………………………..59
4.2 以能帶圖輔助解析不同濃度氫氟酸下n-type Si之光電化學矽蝕刻……60
4.2.1蝕刻能帶圖解析原理….…………………………..61
4.2.2不同HF濃度下蝕刻之能障………………………..62
4.2.3本蝕刻系統之電化動力學解析………….………..62
4.3 以能帶圖輔助解析添加不同濃度酒精於氫氟酸蝕刻液 n-type Si之光電化學矽蝕刻64
4.3.1 n-Si/HF系統能帶圖用在矽蝕刻之解析………….66
4.3.2不同酒精濃度下氫氟酸蝕刻液之蝕刻速率……..67
4.3.3蝕孔形貌之探究….………………………………..68
4.3.4電化動力學解析….………………………………..69
第五章 結論…………………………………………………………..109
第六章未來展望(氟化銨、其它溶液、其它半導體)……………….111
參考文獻………………………………………………………………112
作者個人簡介…………………………………………………………118
著作列表………………………………………………………………119
參考文獻 [Adamson] Adamson, A. W. Textbook of Physical Chemistry, P. 436, Academic Press Inc.: New York, 1978.
[Allongue] Allongue, P.; Kieling, V. C.; Gerischer, H. J. Electrochem. 1993, 140(4), 1018-1026.
[Bard] Bard, A. J. Electrochemical Methods Fundamentals and Applications, P. 745, John Wiley & Sons: New York, 2000.
[Barillaro 1] Barillaro, G.; Nannini, A.; Piotto, M. Sensors and Actuators, 2002, A102, 195-197.
[Barillaro 2] Barillaro, G.; Nannini, A.; Piotto, M. J.Electrochem. Soc., 2002, 149, c180-182.
[Beale 1] Beale, J.; Ghew, G.; Uren, M. J.; Cullis, A. G.; Benjamin, J. D. Applied Physic Letter 1985, 46(1), 86-88.
[Beale 2] Beale, J.; Ghew, G.; Uren, M. J.; Cullis, A. G.; Benjamin, J. D. J. Crystal Growth 1985, 73,622-623.
[Bsiesy] Bsiesy, A.; Vial, J. C.; Gaspard, F.; Herino, R.; Ligeon, M.; Muller, F.; Romestain, R.; Wasiela, A.; Halimaoui, A.; Bomchil, G. Surface Science 1991, 254(1-3), 195-200.
[Chen] Chen, L. C.; Chen, M. J.; Lien, C. S.; Wan, C. C. J.Electrochem. Soc. 1995, 142(1), 170-176.
[Cullis] Cullis, A. G; Canham, L. T. Nature 1991, 353(6342), 335-338.
[Donald] Donald, A. Neamen”Semiconductor Physics & Devices”, pp.329(1997).
[Fu] Fu, H. R. “Study on the Application of Porous Si to Si-based High-Frequency on-Chip Inductors”, Master Thesis, Tsing Hua,Taiwan, 2000.
[Francia] Francia, G. D.; Salerno, A. J. Electrochem. Soc. 1994, 141, 689.
[Gomes] Gomes, W. P.; Cardon, F. Prog. Surf. Sci 1982, 12, 155.
[Hall] Hall, R. N. Phys. Rev. 1952, 87, 837-838.
[Hejjo] Hejjo, M.; Christophersen, M.; Ottow, S.; Carstensen, J.; Foll, H. J. Electrochem.Soc. 2000, 147(2), 627-629.
[Janshoff] Janshoff, A.; Dancil, K. P.; Steinem, C.; Greiner, P.; Lin, Y.; Gurtner, C.; Mosteshariei, K.; Sailor, M. J.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 12108-12109.
[Jones] Jones, D. A. Principles and Prevention of Corrosion; Macmillan: New York, 1992.
[Jehng] Jehng, W. D.; Lin, J. C. Accepted for publication in J. Electrochem. Soc., 2004.
[Kern] Kern, W.; Puotinen, D. RCA Rev. 1970, 31, 187-188.
[Kleimann] Kleimann, P.; Linnros, J.; Petersson, S. Materials Science and Engineering, 2000, B69-70, 29-31.
[Kordas] Kordas, K.; Remes, J.; Beke, S.; Hu, T.; Leppavuori, S. Applied Surface Science, 2001, 178, 190-192.
[Lashmor] Lashmor, D. S.; Beauchamp, C. R.; Electrodeposition Technology theory and Practice 1987, 81-17, 565-575.
[Lehmann 1] Lehmann, V.; Föll, H. J. Electrochem. Soc. 1990, 137, 653-654.
[Lehmann 2] Lehmann, V.; Gosele, U. Applied Physic Letter, 1991, 58, 8-9.
[Lehmann 3] Lehmann, V. proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1996, 1-6.
[Lehmann 4] Lehmann, V. Mater.Lett. 1996, 28, 245-246.
[Lehmann 5] Lehmann, V.; Gruning, U. Thin Solid Films 1997, 297, 13-17.
[Lehmann 6] Lehmann, V.; Stengl, R.; Luigart, A. Materials Science and Engineering, 2000, B69-70, 11-13.
[Lockwoodm] Lockwoodm, D. J.; Aers, G. C.; Allard, L. B.; Bryskiewicz, B.; Charbonneau, S.; Houghton, D. C.; Mccaffrey, J. P.; Wang, A. J. Phys. 1992, 70, 1184 -1185.
[Mayer] Mayer, J. W.; Lau, S. S. Electronic Materials Science: for integrated circuits in Si and GaAs; Wiley: New York, 1990.
[Neamen] Neamen, D. A. Semiconductor Physics & Devices, 2nd ed.; Mc Graw: New York, 1998.
[Perez] Perez, J. M.; Villalobos, J.; Prasad, J.; Cheek, R.; Kelber, J.; Estrera, J. P.; Stevens, P. D; Glosser, R. Applied Physics Letter 1992, 61(5), 563-565.
[Proot] Proot, J. R.; Delerue, C.; Allen, G. Applied Physic Letter 1992, 61,1948-1949.
[Raman] Raman,V.; Pusharanam, M.; Jayakrishnan, S.; Shenoi, B. A. Metal finishing 1983, May, 85-90.
[Richer] Richer, A. IEEE Electron Device Letter 1991, 12(12), 691-692.
[Sangnes] Sangnes, I.; Halimaoui, A.; Vincent, G.; Badoz, P. A. Applied Physic Letter 1993, 63(10), 1155-1157.
[Smestad] Smestad, G.; Ries, H. Solar Energy Materials and Solar Cells 1992, 26(4), 563-565.
[Smith 1] Smith, R. L.; Chuang, S. F.; Collins, S. D. J. Electro. Mater. 1988, 17,533-535.
[Smith 2] Smith, R. L.; Collins, S. D. J. Appl. Phys. 1992, 71(8), 1-3.
[Taiercio] Taiercio, T.; Dihan, M.; Massone, E.; Gue, A. M.; Fraisse, B.; Foucaran, A. Thin Solid Film 1995, 255, 310-311.
[Traasatti] Traasatti, S. “The absolute electrode potential: an explanatory note“, IUPAC Commission I. 3, electrochemistry, (1984)
[Tsai 1] Tsai, C.; Li, K. H.; Sarathy, J.; Shih, S.; Campbell, J. C.; Hance, B. K; White, J. M. Applied Physics Letter 1991, 59(12), 2814 -2816.
[Tsai 2] Tsai, C.; Li, K. H.; Kinosky, D. S.; Qian, R. Z.; Hsu, T. C.; Irby, J. T.; Banerjeee, S. K.; Tasch, A. F.; Campgell, J. C.; Hance, B. K.; White, J. M. Applied Physics Letter 1992, 60(14), 1770-1772.
[Tsai 3] Tsai, H.Y. “A study of the optical-electrical properties of porous silicon and the observation of NDR phenomenon in porous silicon superlattice” , NCKU master paper, pp.39(1995).
[Turner] Turner, D. R. J. Electrochem. Soc. 1958, 105, 402-404.
[Uhlir] Uhlir, A.: Bell System. Tech. J. 1956, 35, 333-336.
[Unagami] Unagami, T. J. Electrochem. 1980, 127, 476-468.
[Willeke] Willeke, G.; Nussbaumer, H.; Bender, H.; Bucher, E. Solar Energy Materials and Solar cells 1992, 26(4), 345-346.
[Wu] Wu, H.C.; Li, U.F. Electrochemistry Dynamics 2001, 184.
[Zhang 1] Zhang, X. G.; Collins, S. D.; Smith, R. L. J. Electrochem. Soc. 1989, 136, 1561-1563.
[Zhang 2] Zhang, X. G. J. Electrochem. 1991, 138, 3750-3752.
[Zhang 3] Zhang, X. G. Electrochemistry of Silicon and Its Oxide, P. 6, Kluwer Academic: New York, 2001.
[Zhang 4] Zhang, X. G. J. Electrochem. Soc., 2004, 151, c69-80.
[張俊彥 1] 張俊彥主編﹐“積體電路製程及設備技術手冊”﹐中華民國產業科技發展協進會出版﹐pp551-532﹐(1997)
[張俊彥 2] 張俊彥譯﹐“半導體元件物理與製作技術”﹐高立出版﹐pp544-562﹐(2000)
[張俊彥 3] 張俊彥譯﹐“半導體元件物理與製作技術”﹐高立出版﹐pp1-66﹐(2000)
[微系統] “微系統LIGA 製程技術”﹐科儀新知第19 卷第4 期﹐(1998)
[劉金耀] 劉金耀﹐第二屆奈米工程暨微系統技術研討會論文集﹐pp147-154﹐
(1998)
[洪淑慧] 洪淑慧﹐”多孔矽之原子力顯微鏡與光激發光之研究”,國立清華大學物理系碩士論文(1999)
[蔡志昌] 蔡志昌﹐”光電化學蝕刻n型(100)單晶矽獲得矩陣排列之巨孔洞研究”,國立中央大學機械工程研究所(2000)
指導教授 林景崎(Jing-Chie Lin) 審核日期 2005-5-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明