博碩士論文 90343008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.116.40.53
姓名 吳坤齡(Kun-Ling Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 界面活性劑與電泳輔助放電加工之研究
(A Study of Electrical Discharge Machining Aided by Surfactant and Electrophoresis)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 放電加工是利用電能轉變成熱能產生高溫達到去除材料的目的,適用於高硬度、高強度等難切削之材料加工。由於放電過程中工件表面受到急冷急熱的作用,容易產生微裂縫、微氣孔等缺陷,使得加工面的品質變差;對機件使用壽命上造成嚴重的影響。因此如何精修放電表面,提升加工品質是本論文所要探討的主題。
本研究針對放電加工後表面粗糙度不佳的缺點,提出了三種改善表面品質的方法,分別為加工液中添加界面活性劑、放電面噴塗介電材料及結合電泳拋光技術對放電加工表面進行精修,達到精緻表面的目的。經由實驗結果分析顯示,純煤油中添加Span 20 界面活性劑,藉由界面活性分子的作用,達到分散碳渣、加工屑的效果,減少積碳、放電集中現象,對材料去除率可提升40~85%;純煤油中添加鋁粉與非離子界面活性劑Tween 80,改善了鋁粉集聚現象,使其更均勻地分散於放電加工液中,對放電後的工件表面粗糙度可改善60%;另一種方法為放電面上噴塗介電材料,以其薄膜厚度來影響放電痕高低點之電阻抗,消耗部份的放電能量,使得放電痕之隆起處逐一被去除,留下深淺均一的凹坑,因此加工後工件表面粗糙度改善率可以提升33%,表面粗度值穩定性可以增加18%;而採用電泳沉積方法可使粒徑0.3µm的Al2O3顆粒均勻吸附於旋轉電極,配合適當參數對放電後之工件進行精密拋光,可在5~10 min將初始粗糙度0.52 µmRa的放電表面改善到0.068 µmRa 似如鏡面的效果,對縮短加工時間與改善表面粗糙度效果相當明顯。
摘要(英) In electrical discharge machining (EDM), materials are removed by thermal energy transformed from electrical energy. This technique can be applied to remove materials with high hardness and strength, which are difficult to machine by traditional methods. During the process, the workpiece is subject to rapid heating and cooling under a violent temperature gradient. As a result, defects such as microcracks and pores are formed, to deteriorate the surface quality and shorten the life cycle. In view of such drawbacks, this study aims to enhance the high precision quality of electrical discharge machined surface.
Three approaches to improve the surface roughness and to achieve a mirror-like surface quality are proposed. Three techniques including the addition of surfactant to dielectric, the spraying of dielectric material and the combination of EDM with electrophoretic deposition polishing (EDP) are further studied. For the first approach, the experimental results reveal that adding surfactant Span20 to kerosene can disperse carbon and debris through the molecular reaction of the surfactant. As a result, carbon accumulation and concentrated discharge are reduced and material removal rate can be improved by 40-85%. Similarly, the addition of Al powder and surfactant Tween 80 to kerosene helps reduce the agglomeration of Al powder, thus ensuring even distribution of Al powder in the dielectric, which in turn improves surface roughness by 60%. The second approach influences the impedance of the electrical discharge profile by spraying thin films with different thickness, which consumes part of the discharge energy. The bulges on the surface are removed by the second electrical discharge, leaving craters of even depth and thus improve the surface roughness by 33%. In addition, the surface roughness stability is together with an increase in surface roughness improved by 18%. Finally, combining EDM with EDP using 0.3µm of Al2O3 particles can improve the initial surface roughness from 0.52 µmRa to a mirror-like surface of 0.068 µmRa. In addition, the total working time required for the polishing process can also be reduced significantly to around 5 to 10 minutes.
關鍵字(中) ★ 放電加工
★ 表面粗糙度
★ 材料移除量
★ 電泳沉積
★ 鏡面
關鍵字(英) ★ material removal
★ surfactant
★ electrophoretic deposition
★ mirror-like surface
★ surface roughness
★ EDM
論文目次 目 錄
中文摘要 I
英文摘要 II
謝誌 IV
目錄 V
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景 2
1-3 文獻回顧 5
1-4 研究方法 12
1-5 本論文之構成 14
第二章 界面活性劑對放電加工特性的影響 16
2-1 前言 16
2-2 基本原理 17
2-2-1放電加工 17
2-2-2界面活性劑原理應用 21
2-3 實驗方法 22
2-4 結果與討論 23
2-4-1 添加界面活性劑種類及濃度評估 23
2-4-2 放電加工液中添加界面活性劑的效果 24
2-5 放電特性探討 27
2-5-1 峰值電流之影響 27
2-5-2 極間電壓的影響 28
2-5-3 脈衝時間之影響 30
2-5-4 再鑄層觀察 30
2-5-5 放電波形探討 32
2-5-6 加工時間與加工液對放電特性的影響 33
2-6 結論 37
第三章 加工液中添加鋁粉與界面活性劑對放電表面
之改善效果 38
3-1 前言 38
3-2 田口品質工程 39
3-2-1 田口實驗設計法 39
3-2-2 變異數分析 40
3-3 實驗內容與方法 41
3-3-1 實驗方法 41
3-3-2 實驗材料 43
3-4 結果與討論 44
3-4-1 放電加工液中添加鋁粉與界面活性劑的特性 44
3-4-2 田口式實驗結果分析 47
3-4-2-1 L18直交表及實驗數據 47
3-4-2-2 材料去除率分析 48
3-4-2-3 表面粗糙度分析 48
3-4-2-4 驗證實驗 51
3-5 放電特性的探討 53
3-5-1 不同加工液對放電特性的影響 53
3-5-2 不同加工液對極間間隙之討論 54
3-5-3 加工極性對表面粗糙度之影響 54
3-5-4 峰值電流對表面粗糙度之影響 58
3-5-5 脈衝時間對表面粗糙度之影響 62
3-6再鑄層觀察與討論 63
3-7結論 65
第四章 噴塗製程對放電加工面之改善研究 66
4-1 前言 66
4-2 噴塗製程之加工原理 67
4-3 實驗方法與研究內容 69
4-3-1 實驗設備與材料 69
4-3-2 研究內容 69
4-4 結果與討論 71
4-4-1 塗料中添加粉末種類對表面粗糙度的影響 71
4-4-2 塗料中添加粉末濃度對表面粗糙度的影響 75
4-4-3 不同製程對放電加工面的影響 75
4-4-4 不同製程對表面粗糙度均勻性的影響 80
4-4-5 再鑄層觀察 81
4-4-6 放電波形探討 83
4-5 結論 85
第五章 結合微能量放電與電泳沉積拋光的鏡面加工研究 86
5-1 前言 86
5-2 電泳沉積原理 87
5-3 實驗設備與方法 87
5-3-1 實驗設備 87
5-3-2 實驗方法 90
5-3-2-1 電泳沉積最佳參數 90
5-3-2-2 微能量放電與電泳拋光實驗 90
5-4 結果與討論 92
5-4-1電泳沉積的參數選擇 92
5-4-1-1電壓 93
5-4-1-2 電極轉速 95
5-4-1-3 溶液酸鹼值 97
5-4-1-4 磨粒濃度 98
5-4-1-5 電泳沉積最佳參數 99
5-4-2 電泳沉積拋光的效果 99
5-4-2-1 加工時間對粗糙度的影響 99
5-4-2-2 變質層探討 102
5-4-2-3 電泳拋光與傳統機械拋光的比較 102
5-5 結論 105
第六章 總結論 106
參考文獻 108
圖 目 錄
圖1-1 目前放電加工主要研究領域 4
圖1-2 實驗流程圖 13
圖2-1 放電加工示意圖 19
圖2-2 放電加工材料去除機制示意圖 20
圖2-3 界面活性劑分子示意圖 21
圖2-4 界面活性劑濃度對表面粗糙度、材料去除率的 影響 24
圖2-5 不同放電加工液置放7天後外觀狀態 25
圖2-6 界面活性分子分散加工屑示意圖(a)加工屑於加工液中流動;(b)加工屑因靜電力集聚在一起;(c)添加界面活性劑後,界面活性分子包覆著加工屑減少粒子集聚現象。 26
圖2-7 放電集中之SEM圖 27
圖2-8 加工電流對表面粗糙度、材料去除率的影響 29
圖2-9 不同極間電壓對表面粗糙度、材料去除率的影響 29
圖2-10 脈衝時間對表面粗糙度、材料去除率的影響 31
圖2-11 不同加工液放電後之表面再鑄層SEM圖 32
圖2-12 不同加工液之放電波形
( P : +, I p : 3A, Ton : 25us, Eg : 40V, Time : 40 min) 34
圖2-13 不同加工液放電之延遲時間比較
( P : +, I p : 3A, Ton : 25 us, Eg : 40V, Time : 40 min) 35
圖2-14 不同加工液放電加工後之SEM比較
( P : +, I p :3A, Ton : 1 us, E g : 40V) 36
圖2-15 不同加工液加工深度比較
( P : +, I p : 8A, Ton : 25 us, E g : 40V, Time : 30 min) 36
圖3-1 不同放電加工液的實際外觀
(a) Kerosene+Al; (b) Kerosene + Al + surfactant。 45
圖3-2 界面活性分子分散鋁粉示意圖;(a) 加工液中添加鋁粉,經攪拌鋁粉呈現局部聚集,(b) 添加界面活性劑後,界面活性分子會將聚集的鋁粉逐漸拉開,(c) 聚集的鋁粉分離。 46
圖3-3 材料移除率之因子回應圖 50
圖3-4 表面粗糙度之因子回應圖 51
圖3-5 不同加工液放電後之表面粗糙度比較 53
圖3-6 不同加工液放電後之表面SEM圖
(Polarity: +, Ip: 0.3A, Pulse: 1.5μs) 55
圖3-7 不同放電加工液與脈衝時間對極間間隙比較圖 56
圖3-8 不同極性與脈衝時間對表面粗糙度的影響 56
圖3-9 不同極性與電流對表面粗糙度的影響 57
圖3-10 不同極性與加工液放電表面SEM比較圖
(Ip: 0.3A, Pulse: 1.5μs) 59
圖3-11 不同脈衝時間下對表面粗糙度的影響(Ip:0.3A) 60
圖3-12 不同峰值電流下工件表面之表SEM圖
(Polarity: +, Pulse: 1.5μs) 61
圖3-13 不同脈衝時間下工件表面SEM圖
(Polarity: +, Pulse: 1.5μs) 62
圖3-14 不同加工液放電後再鑄層SEM的比較圖
(Polarity: +, Ip: 0.3A, Pulse: 1.5μs) 64
圖4-1 傳統放電與噴塗製程材料去除機制微觀示意圖 68
圖4-2 塗料噴塗於放電坑上的微觀圖 68
圖4-3 噴塗製程實驗流程圖 70
圖4-4 添加不同粉末對表面粗糙度的影響 73
圖4-5 添加不同粉末對表面粗糙度的改善情形 73
圖4-6 不同製程最佳表面狀態的比較圖 74
圖4-7 EDM+噴塗製程在不同極間電壓下對Ra的影響 77
圖4-8 EDM+噴塗製程在不同的極間電壓對Ra的改善率 77
圖4-9 不同製程的加工去除機制示意圖 78
圖4-10 不同製程後3D表面輪廓分析 79
圖4-11 不同製程工件表面狀態和粗度值均勻性示意圖 82
圖4-12 不同製程加工表面再鑄層的比較圖 83
圖4-13 不同製程精加工之放電波形(0.38A) 84
圖5-1 電泳沉積實驗示意圖 88
圖5-2 實驗機構示意圖 89
圖5-3 實驗流程圖 91
圖5-4 電泳拋光示意圖 92
圖5-5 電壓對沉積量的關係圖 94
圖5-6 烘乾後顆粒占沉積量之百分比 94
圖5-7 電泳沉積拋光表面EDS成分分析 95
圖5-8 轉速對沉積量的影響 96
圖5-9 轉速對表面粗糙度的影響 96
圖5-10 沉積量對pH的變化 97
圖5-11 濃度對沉積量的變化 98
圖5-12 軸向荷重與表面粗糙度之關係 100
圖5-13 不同粒徑粗糙度與拋光時間之影響 101
圖5-14 電泳沉積拋光後表面的EDS及SEM分析圖 101
圖5-15 拋光前後變質層之比較 103
圖5-16 一般拋光與電泳拋光工件表面粗糙度之比較 103
圖5-17 電泳拋光前後之工件表面SEM照片比較圖;(a)放電表面,(b)電泳拋光面,(c)電泳拋光後工件表面似如鏡面。 104
表 目 錄
表2-1 Span系列之化學性質 22
表2-2 實驗之加工條件 23
表3-1 實驗之加工參數 41
表3-2 實驗設計之參數與水準值 43
表3-3 鋁粉之化學組成 43
表3-4 界面活性劑之化學組成 44
表3-5 L18直交表實驗的參數組合及訊號/噪音比 47
表3-6 材料移除率之變異數分析與F檢定 49
表3-7 表面粗糙度之變異數分析與F檢定 50
表3-8 材料移除率最佳值與驗證實驗值比較 52
表3-9 表面粗糙度最佳值與驗證實驗值比較 52
表4-1 導電顆粒的平均粒徑和電阻係數 72
表4-2 鋁粉和鉻粉的物理性質 72
表5-1 使用微能量放電加工之參數 92
表5-2 電泳沉積最佳參數 99
參考文獻 1.G.F. Benedict, Nontraditional manufacturing processes, Marcel Dekker, New York, (1987).
2.E.J. Weller, Nontraditional machining Processes, Society of Manufacturing Engineers, Dearborn, Michigan, USA. 2/e (1983).
3.K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture 43 (2003) 1287–1300.
4.P.E. Berghausen, H.D. Brettschneider, M. F. Davis, Electrodischarge machining program, The Cincinnati Milling Mc. Co. Final report ASD-TR-63-7-545 (1963).
5.E.V. Kholodnov, Precision electric-spark machining of metals in a carbon-free medium, Appl. Electrical Phenomena, No.1, pp.30-37, (1965).
6.K.M. Teshima, T. Sata, Performance of working fluid in high speed EDM, (1970) 26-34.
7.A. Erden, D. Temel, Investigation on the use of water as a dielectric liquid in electric discharge machining, in: Proceedings of the 22nd Machine Tool Design and Research Conference, Manchester (1981) 437– 440.
8.T. Masuzawa, K. Tanuka, Water-based Dielectric Solution for EDM, Annals of the CIRP, Vol.32, No.1, (1983) 119-122.
9.K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining using water as a working fluid-I: Micro-hole drilling, Precision Engineering, Vol.8, No.37, (1986)156-162.
10.W. König, L. Jörres, Aqueous solutions of organic compounds as dielectrics for EDM sinking, Annals of the CIRP 36 (1987) 105–109.
11.R. Kranz, F. Wendl, K.-D. Wupper, Influence of EDM conditions on the toughness of tool steels, Thyssen Edelstahl Technische Berichte (1990) 100–105.
12.I. Ogata, Y. Mukoyama, Carburizing and decarburizing phenomena in EDM’d surface, International Journal of Japan Society Precision Engineering 27 (3) (1993) 197–202.
13.W. König, F. Klocke, M. Sparrer, EDM-sinking using water-based dielectrics and electropolishing – a new manufacturing sequence in tool-making, in: Proceedings of the 11th International Symposium on Electromachining (ISEM XI), Lausanne, Switzerland (1995) 225- 234.
14.S.L. Chen, F.Y. Huang, Y. Suzuki, B. H. Yan, Electrical discharge machining characteristics of Ti-6Al-4V alloy using distilled water as a dielectric fluid, Journal of Japan Institute of Light Metals, Vol.47, No4, (1997) 226-231,.
15.S.L. Chen, B.H. Yan, F.Y. Huang, Influence of kerosene and distilled water as dielectric discharge machining characteristics of Ti-6Al-4V alloy, Journal of Materials Processing Technology, Vol.87, (1999) 107-111,.
16.R. Dewes, D. Aspinwall, J. Burrows, M. Paul, F. El-Menshawy, High speed machining-multi-function/hybrid systems, in: Proceedings of the Fourth International Conference on Industrial Tooling, Southampton, UK (2001) 91–100.
17.Q.H. Zhang, J.H. Zhang, J.X. Deng, Y. Qin, Z.W. Niu, Ultrasonic vibration electrical discharge machining in gas, Journal Materials Processing Technology 129 (2002) 135-138.
18.H. E. Bruyn, Some aspects of the influence of gap flushing on the accuracy in finishing by spark erosion, Annals of the CRIP, Vol.18, (1970) 147-161.
19.H.E. De Bruijn, T.H. Delft, A.J. Pekelaring, Effect of a magnetic field on the gap cleaning in EDM, Annals of the CIRP 27 (1) (1978) 93–95.
20.V.S.R. Murti, P.K. Philip, Comparative analysis of machining characteristics in ultrasonic assisted EDM by the response surface methodology, International Journal of Production Research 25 (2) (1987) 259–272.
21.V.S.R. Murti, P.K. Philip, An analysis of the debris in ultrasonic-assisted electrical discharge machining, Wear, 117, (1987) 241-250.
22.M. Kunieda, T. Masuzawa, A fundamental study on a horizontal EDM, Annals of the CIRP 37 (1) (1988) 187–190.
23.K.P. Rajurkar, G.F. Royo, Improvement in EDM performance by R.F. control and orbital motion, American Society of Mechanical Engineers 34 (1989) 51-62.
24.S. Enache, C. Opran, G. Stoica, E. Strajescu, The study of EDM with forced vibration of tool-electrode, Annals of CIRP, Vol.39, No.1, (1990) 167-170.
25.B. H. Yan, M. D. Chen, Effect of ultrasonic vibration on electrical discharge machining characteristic of Ti-6Al-4V alloy, Journal of Japan Institute of Light Metals, Vol.44, No.5, (1993) 281-285.
26.J.S. Soni, G. Chakraverti, Machining characteristics of titanium with rotary electro-discharge machining, Wear 171 (1994) 51– 58.
27.J. Zhixin, Z. Jianhua, A. Xing, Ultrasonic vibration pulse electro-discharge Machining of holes in engineering ceramics, Journal of materials processing technology, Vol.53, (1995) 811-816.
28.S. L. Chen, F. Y. Huang, Y. Suzuki, B. H. Yan, Improvement of material removal rate of Ti-6Al-4V alloy by electrical discharge machining with multiple ultrasonic vibration, Journal of Japan Institute of Light Metals, Vol.47 No.4, (1997) 220-225.
29.B.H. Yan, C.C. Wang, W.D. Liu, F.Y. Huang, Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode, International Journal of Advanced Manufacturing Technology 16 (5) (2000) 322–333.
30.Y. C. Lin, B. H. Yan, Y. S. Chang, Machining characteristics of titanium alloy (Ti-6Al-4V) using combination process of EDM with USM, Journal of Materials Processing Technology, 104, (2000) 171-177.
31.Y.H. Guu, H. Hocheng, Effects of workpiece rotation on machinability during electrical discharge machining, Materials and Manufacturing Processes 16 (1) (2001) 91–101.
32.M.L. Jeswani, Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining, Wear 70 (1981) 133-139.
33.T. Takawshi, Study on the mirror surface machining by planetary EDM, International Symposium of Electro machining ISME-7, (1983) 137-147.
34.N. Mohri, N. Saito, H. Ohtake, T. Takawashi, K. Kobayashi, Finishing on the large area of work surface by EDM, Journal of Japan Society of Precision Engineering, Vol.53, No l, (1987) 124-130.
35.H. Narumiya, N. Mohri, N. Saito, H. Ohtake, Y. Tsunekawa, T. Takawashi, K. Kobayashi, EDM by powder suspended working fluid, Proceedings of International symposium for Electro-Machining, The Japan Society of Electrical-Machining Engineers (1989) 5- 8.
36.N. Saito, N. Mohri, Improvement of machined surface roughness in large area EDM, Journal of the Japan Society of Precision Engineering, Vol.57, No.6, (1991) 954-958.
37.B.H. Yan, S.L. Chen, Effect of dielectric with suspended aluminum powder on EDM, Journal Chinese Society of Mechanical Engineers (1993) 307-312.
38.B.H. Yan, S.L. Chen, Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with aluminum powder, Journal of the Japan Institute of Metals, 58 (9) (1994) 1067-1072.
39.Q.Y. Ming, L.Y. He, Powder-suspension dielectric fluid for EDM, Journal of Materials Processing Technology 52 (1995) 44-54.
40.H.M. Chow, B.H. Yan, F.Y. Hung, Study of added powder in kerosene for the micro-slit machine of titanium alloy electro-discharge machining, Journal of Material Processing Technology, Vol.101, (2000) 95-103.
41.B.H. Yan Y.C. Lin, F.Y. Huang, C.H. Wang, Surface modification of SKD 61 during EDM with metal powder in the dielectric, Materials Transactions, JIM 42 (12) (2001) 2597-2604.
42.Y.F. Tzeng, C.Y. Lee, Effect of powder characteristics on electrodischarge machining, International Journal of Advanced Manufacturing Technology 7 (2001) 586-592.
43.W.S. Zhao, Q.G. Meng, Z.L. Wang, The application of research on powder mixed EDM in rough machining, Journal of Materials Processing Technology 129 (2002) 30-33.
44.F. Klocke, D. Lung, G. Antonoglou, D. Thomaidis, The effects of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies, Journal of Materials Processing Technology 149 (2004) 191–197.
45.S.M. Pandit, K.P. Rajurkar, Crater geometry and volume form electro-discharge machined surface profiles by data dependent systems, Journal of Engineering for Industry, Vol. 102, (1980) 289-295.
46.J.D. Ayers, K. Moore, Formation of metal carbide powder by spark machining of reactive metals, Metallurgical Transactions A 15A (1984) 1117–1127.
47.P.C. Pandey, S.T. Jilani, Plasma channel growth and the resolidified layer in EDM, Precision Engineering 8 (2) (1986) 104–110.
48.A.G. Mamalis, G.C. Vosniakos, N.M. Vaxevanidis, Macroscopic and microscopic phenomena of electro-discharge machined steel surfaces: An experimental investigation, Journal of Mechanical Working Technology, Vol.15, (1987) 335-356.
49.T. Tsutsui, T. Tamura, Effect of the electro-discharge machined surface on the mechanical properties. On the surface defects and transverse rupture strength of cemented carbide, Bulletin of the Japan Society of Precision Engineering 20 (1) (1986) 60-61.
50.L.C. Lee, L.C. Lim, V. Narayanan, V.C. Venkatesh, Quantification of surface damage of tool steels after EDM, International Journal of Machine Tools & Manufacture 28 (4) (1988) 359–372.
51.L.C. Lee, L.C. Lim, Y.S. Wong, H.H. Lu, Towards a better understanding of the surface features of electro-discharge machined tool steels, Journal of Materials Processing Technology 24 (1990) 513–523.
52.K. Masui, T. Sone, Surface integrity and its improvement of EDM, Journal of the Japan Society of Precision Engineering, Vol.57, No.6, (1991) 945-948.
53.L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu, Solidification microstructure of electrodischarge machined surfaces of tool steels, Materials Science Technology 7 (3) (1991) 239–248.
54.Y. Yang, Y. Mukoyama, H. Kato, T. Hanaka, Analysis of crack generative region in crater machined by impulsive electrical discharge, 精密工學會誌, Vol.60, No.3, (1994) 388-392.
55.B.H. Yan, C.C. Wang, H.M. Chow, Y.C. Lin, Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite, International Journal of Machine Tools & Manufacture 40 (10) (2000) 1403–1421.
56.Y.H. Guu, H. Hocheng, C.Y. Chou, C.S. Deng, Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel, Materials Science and Engineering A358 (2003) 37–43.
57.G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, R. Flükiger, Microstructure at submicron scale of the white layer produced by EDM technique, Journal of Materials Processing Technology 149 (2004) 289–295.
58.H. Narumiya, N. Mohri, M. Suzuki, Surface modification by EDM, Research and Technological Development in Nontraditional Machining, Proceedings of the Winter Annual Meeting of the ASME, Chicago, USA, Vol.34, (1988) 21-30.
59.N. Mohri, N. Saito, M. Suzuki, T. Takawashi, K. Kobayashi, Surface modification by EDM - an innovation in EDM with semi-conductive electrodes, American Society of Mechanical Engineers, Production Engineering Division (Publication) PED 34 (1988) 21-30.
60.A. Gangadhar, M.S. Shunmugam, P.K. Philip, Surface modification in electrodischarge processing with a powder compact tool electrode, Wear 143, (1991) 45-55.
61.N. Mohri, N. Saito, Y. Tsunekawa, N. Kinoshita, Metal surface modification by electrical discharge machining with composite electrode, Annals of the CIRP 42 (1) (1993) 219–222.
62.Y. Fukuzawa, Y. Kojima, E. Sekiguti, N. Mohri, Surface modification of stainless steel by electrical discharge machining, The Iron and Steel Institute of Japan International 33 (9) (1993) 996-1002.
63.Q.Y. Ming, L.Y. He, Powder-suspension dielectric Fluid for EDM, J of Material Processing Technology, Vol.52, (1995) 44-54.
64.J.S. Soni, G. Ghakraverti, Experiment investigation on migration of material during EDM of die steel (T215 Cr12), Journal of Materials Processing Technology 56 (1996) 439-451.
65.Y. Tsuekawa, M. Okumiya, N. Mohri, E. Kuribe, Formation of composite layer containing TiC precipitates by electrical discharge alloying, Materials Transactions, JIM Vol.38 No.7 (1997) 630-635.
66.D.I. Pantelis, N.M. Vaxevanidis, A.E. Houndri, P. Dumas, M. Jeandin, Investigation into the application of electrodischarge machining as steel surface modification technique, Surface Engineering 14 (1) (1998) 55–61.
67.Y.C. Lin, B. H. Yan, F. Y. Huang, Surface modification of Al-Zn-Mg aluminum alloy using combined process of EDM with USM, Journal of Materials Processing Technoloy 115 (2001) 359-366.
68.Z.L. Wang, Y. Fang, P.N. Wu, W.S. Zhao, K. Cheng, Surface modification process by electrical discharge machining with Ti powder green compact electrode, Journal of Materials Processing Technology 129 (2002) 139-142.
69.J. Simao, H.G. Lee, D.K. Aspinwall, R.C. Dewes, E.M. Aspinwall, Workpiece surface modification using electrical discharge machining, International Journal of Machine Tools & Manufacture 43 (2003) 121–128.
70.T. Moro, N. Mohri, H. Otsubo, A. Goto, N. Saito, Study on the surface modification system with electrical discharge machine in the practical usage, Journal of Materials Processing Technology 149 (2004) 65–70.
71.H. Huang, H. Zhang, L. Zhou, H. Y. Zheng, Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol, Journal of micro-mechanics and microengineering, 13, (2003) 693- 700.
72.P. Pecas, E. Henriques, Influence of silicon powder-mixed dielectric on conventional electrical discharge machining, International Journal of Machine Tools & Manufacture, 43, (2003) 1465- 1471.
73.M. J. Rosen, Surfactants and Interfacial Phenomena, John Wiley & Sons, New York (1989) 7-103.
74.D. J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworth- Heinemann, Oxford (1992) 64-96.
75.Jan M. Neirynck, G. -R. Yang, Shyam P. Murarka, Ronald J. Gutmann, The addition of surfactant to slurry for polymer CMP: effects on polymer surface, removal rate and underlying Cu, Thin Solid Films, 290-291, (1996) 447-452.
76.P. Bernard, Ph. Kapsa, T. Coude, J. -C. Abry, Influence of surfactant and salts on chemical mechanical planarisation of copper, Wear, 259, ( 2005) 1367-1371.
77.E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Münchmeyer, Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming,and plastic moulding (LIGA rocess), Microelectronic Engineering, 4 (1), (1986) 35-56.
78.A. S. Dukhin P. J. Goetz, Ionic properties of so-called“non-ionic” surfactants in non-polar liquids, Dispersion Technology Inc., Bedford Hills, NY, USA, (2004) 1-21.
79.J. Q. Feng, D. A. Hays, Relative importance of electrostatic forces on powder particles, Powder Technology, 135-136,(2003) 65-75.
80.N. Mohri, N. Saito, T. Takawashi, Mirror-Like Finishing by EDM, in: Proceedings of the 25th International Symposium on Machine Tool Design and Symposium, UK, (1985) 329-336.
81.Y. S. Wong, L . C. Lim, Iqbal Rahuman, W. M. Tee, Near-Mirror-Finish Phenomenon in EDM Using Powder-Mixed, Journal of Material Processing Technology, 79, (1998) 30-40.
82.Y. F. Luo, Z. Y. Zhang, C. Y. Yu, Mirror Surface EDM by Electric Field Partially Induced, Annals of the CIRP 34, (1988) 179-181.
83.B.H. Yan, S.L. Chen, Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with alumina powder, Journal of Japan institute Metals 58 (9) (1994) 1067-1072.
84.W. J. Chow, C. H. Sun, G. P. Yu, J. H. Huang, Optimization of the deposition process of ZrN and TiN thin films on Si(100) using design of experiment method, Materials Chemistry and Physics 82 (2003) 228-236.
85.J. Q. Feng, D. A. Hays, Relative importance of electrostatic forces on powder particles, Powder Technology 135-136 (2003) 65-75.
86.L.C. Lee, L.C. Lim, V. Narayanan, V.C. Venkatesh, Quantification of surface damage of tool steels after EDM, International Journal of Machine Tools and Manufacture, 102 (1980) 289-295.
87.Kun Ling Wu, Biing Hwa Yan, Fuang Yuan Huang, Shin Chang Chen, Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric, International Journal of Machine Tools and Manufacture, 45 (2005) 1195-1201.
88.W. S. Zhao, Q. G. Meng, Z. L. Wang, The application of research on powder mixed EDM in rough machining, Journal of Materials Processing Technology, 129 (2002) 30-33.
89.A. Curodeau, Molds surface finishing with new EDM process in air with thermoplastic composite electrodes, Journal of Materials Processing Technology, 149 (2004) 278-283.
90.Yoshiyuki Uno, Akira Okadaa, Kensuke Uemurab, Purwadi Raharjo, High-efficiency finishing process for metal mold by large-area electron beam irradiation, International Journal of Precision Engineering, (2005). This paper accepted.
91.D. Kremer, J. L. Lebrun, B. Hosari, A. Moisan, Effect of ultrasonic vibration on the performances in EDM, Annals of CIRP, 38 (1) (1989) 199-202.
92.D. Kremer, C. Lhiaubet, A. Moisan, A study of the effect of synchronizing ultrasonic vibrations with pulse in EDM, Annals of CIRP, 40 (1) (1991) 211-214.
93.Omer O. Van der Biest, Luc J. Vandeperre, Electrophoretic deposition of materials, Annual Review of Materials Science, 29 (1999) 327-352.
94.K. Simovic, V. B. Miskovic-Stankovic, D. Kicevic, P. Jovanic, Electrophoretic deposition of thin alumina films from water suspension, Colloids and Surfaces (A), 209 (2002) 47-55.
95.K. Takahata, S. Aoki, T. Sato, Fine surface finishing method for 3-dimensional micro structures, proceeding IEEE MEMS. (1996) 73-78.
96.Y. Tani, T. Saeki , Y. Samitsu , K. Kobayashi , Y. Sato , Infeed grinding of silicon wafers applying electrophoretic deposition of ultrafine abrasives, Annals of the CIRP, 47 (1) (1998) 245-248.
97.Z. Haga, T. Semba, Electrophoretic polishing of zirconia ceramics using a porous anodic film as a binder of ultrafine silica abrasives, JSME International Journal Series C, 41 (4) (1998) 922-928.
98.J. A. Yopps, D. W. Fuerstenau, The zero point of charge of alpha-alumina, Journal of Colloid Science, 19 (1963) 61-71.
99.L. C. Lee, L. C. Lim, Y. S. Wong, Towards Crack Minimisation of EDMed Surface, Journal of Materials Processing Technology, 24 (1990) 516-523.
100. R. Bormann, Understanding Die-Sinking EDM Surface Integrity, Journal of Carbide and Tool, (1989) 12-16.
101. L.C. Lee, L. C. Lim, V. Narayanan, V. C. Venkatesh, Quantification of Surface Damage of Tool Steel after EDM, International Journal of Machine Tools & Manufacture, 28 (4) (1988) 359-372.
102. 陳劉旺, 工業塗料與高分子化學 , 高立圖書, (1997) 301-308.
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2006-5-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明